1 Метеорологические условия

1.1 Синоптический обзор

Кинематические карты, рис. 1-1, 1-2 и 1-4, содержат положение циклонов (красный цвет) и антициклонов (синий цвет) на 00 ВСВ каждых суток декады и траектории их смещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта также в срок 00 ВСВ.

I декада января 2016 г.

Японское море

В первой декаде над морем отмечалась зимняя муссонная циркуляция, прерываемая прохождением ложбин, ориентированных с севера, с частными циклонами.

Первая ложбина, наиболее глубокая, проследовала 2–4 января, вызвала усиление ветра до 9–14 м/с, волнение моря развивалось до 2 м. Следующая ложбина проходила над акваторией моря 8 января, 10 января с Китая вышла ещё одна ложбина. Скорость ветра на акватории моря в течение декады не превышала 9–14 м/с, высота волн находилась в пределах 1–2 м, временами отмечались снежные заряды.

Охотское море

В Охотском море в первой декаде значительных штормов не наблюдалось. Погодные условия определялись барической ложбиной, ориентированной с Берингова моря, в области которой под высотными центрами возникали малоподвижные циклоны. 1 января давление в циклоне, который сформировался над северной частью моря, составляло 1008 гПа. В дальнейшем циклон медленно вращался вокруг своей вертикальной оси, оставался в этом районе до конца декады, углублялся. 8 января давление в его центре составляло 988 гПа. В конце декады, 10 января, на юго-запад моря с запада вышел неглубокий циклон с давлением в центре 1006 гПа.

В течение декады ветер был 9-14 м/с, высота волн -1-2 м. В середине декады ветер усиливался до 15-20 м/с, высота волн развивалась до 3-4 м. Отмечались снежные заряды.

Берингово море

В начале декады над центральной частью моря располагался циклон. Быстро заполняясь, он перемещался на восток со скоростью 20 км/ч, 3 января заполнился. В это же время на северовосток моря с Аляски вышел циклон с давлением в центре 968 гПа. Он заполнился вблизи Анадырского пролива.

В середине декады, 5 января, с Аляски на северную часть моря вышел ещё один циклон с давлением в центре 972 гПа. Он прошёл по траектории предыдущего циклона, заполнился 7 числа.

Наиболее активный циклогенез отмечался 7 января. На восточную часть моря с Тихого океана вышел циклон с давлением в центре 956 гПа. Перемещаясь на север, северо-запад со скоростью 20 км/ч, циклон вышел к северо-восточному побережью Камчатки, где заполнился 9 января. Следующий циклон с давлением в центре 976 гПа вышел на восточную часть моря вновь с Аляски 10 числа.

Максимальный ветер на акватории моря наблюдался при прохождении глубокого южного циклона 7 января, скорость ветра достигала 30–35 м/с. Волнение моря развивалось до 8–9 м, видимость при снеге понижалась до нуля.

Северо-западная часть Тихого океана

В первой декаде января в северо-западной части Тихого океана продолжалась активная циклоническая деятельность. Погодные условия формировались под воздействием пяти циклонов.

1 января на юге района образовался циклон с давлением в центре 1002 гПа. В течение суток

он, углубляясь, быстро (50–70 км/ч) смещался на восток-северо-восток, 2 января находился на востоке акватории глубиной 976 гПа. В течение следующих суток циклон продолжал углубляться, смещался на восток-северо-восток, 3 января вышел в северо-восточный сектор океана. Максимальная глубина циклона — 958 гПа. Он обусловил усиление ветра до 25–30 м/с, волнение моря до 7 м, дожди.

3–4 января с Японского моря через северную часть акватории проследовал циклон с давлением в центре 996 гПа. В северной половине района он вызвал усиление ветра до 18–23 м/с, волнение моря 3–4 м, снег при видимости 1–3 км. З января на юго-западе акватории образовался ещё один циклон с давлением в центре 1018 гПа. В течение трех суток он, углубляясь, смещался со скоростью 30–40 км/час на северо-восток, 6 января находился на северо-востоке района глубиной 962 гПа, 7 января вышел на акваторию Берингова моря. В северо-западной части Тихого океана циклон вызвал усиление ветра до 25 м/с, волнение моря развивалось до 5 м, прошли осадки в виде дождя, мокрого снега и снега с ухудшением видимости до 1–3 км.

6 января на юго-западе акватории образовался молодой циклон с давлением в центре 1016 гПа. В течение двух суток он, углубляясь, со скоростью 50–70 км/ч смещался на востоксеверо-восток, 8 января находился на востоке акватории глубиной 980 гПа. 9 января он переместился восточнее 180 меридиана. Циклон вызвал на южной половине акватории усиление ветра до 25 м/с, волнение моря до 5 м, дожди.

8 января на западе района образовался ещё один циклон с давлением в центре 1014 гПа. В течение суток циклон смещался на восток-северо-восток со скоростью 30–40 км/ч, 9 января находился над центральной частью района глубиной 1008 гПа. В течение следующих суток он смещался на восток со скоростью 60 км/ч, углубился до 992 гПа и 10 января переместился восточнее 180 меридиана. Циклон вызвал усиление ветра до 18–23 м/с, волнение моря 3–4 м, дожди.

В период 2–5 января вдоль 28° с. ш. с Восточно-Китайского моря на восток со скоростью 30–40 км/ч проследовал антициклон с давлением в центре 1028 гПа, определяя антициклональный тип погоды на юге акватории.

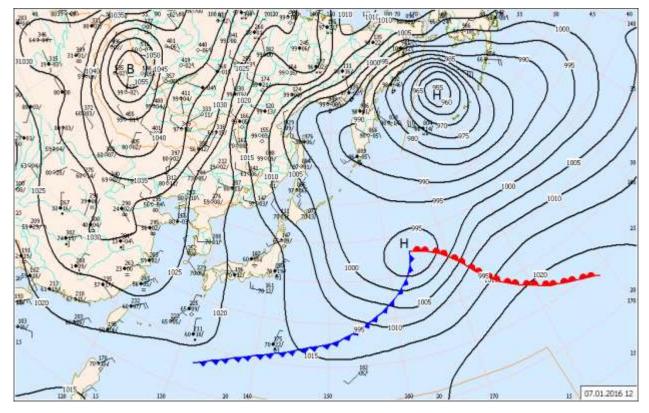


Рис. 1-1 Приземная карта за 12 ВСВ 7 января 2016 г.

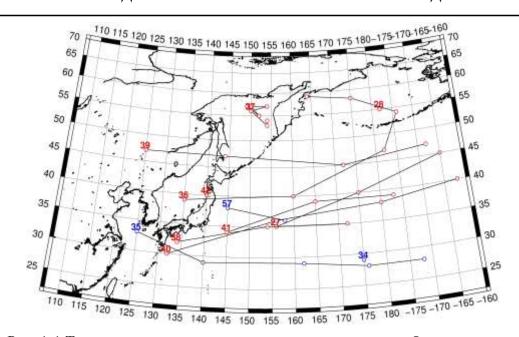


Рис. 1-1 Траектории движения циклонов и антициклонов в I декаде января

		Циклоны			Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
27	01.01.2016	35	156	1002	34	01.01.2016	29	175	1026		
	02.01.2016	40	175	976	35	01.01.2016	33	125	1034		
	03.01.2016	45	195	958		02.01.2016	29	140	1030		
28	01.01.2016	55	182	976		03.01.2016	29	162	1028		
36	04.01.2016	39	135	1014		04.01.2016	28	176	1026		
	05.01.2016	40	160	1000		05.01.2016	28	188	1024		
	06.01.2016	47	182	962	57	09.01.2016	38	145	1020		
	07.01.2016	54	186	956		10.01.2016	36	158	1020		
	08.01.2016	58	175	958							
	09.01.2016	59	164	984							
37	01.01.2016	56	150	1008							
	02.01.2016	57	154	1000							
	03.01.2016	57	150	990							
	04.01.2016	55	152	992							
	05.01.2016	57	149	992							
	06.01.2016	56	150	988							
	07.01.2016	53	154	986							
	08.01.2016	54	154	984							
38	03.01.2016	32	134	1018							
	04.01.2016	35	154	1012							
	05.01.2016	35	172	1006							
39	01.01.2016	47	125	1020							
	02.01.2016	47	144	1008							
	03.01.2016	45	172	996							
	04.01.2016	47	192	984							
40	06.01.2016	30	132	1016							

		Циклоны	Ī		Антициклоны				
	07.01.2016	36	156	1004					
	08.01.2016	38	180	980					
	09.01.2016	40	198	972					
41	08.01.2016	34	145	1014					
	09.01.2016	39	165	1008					
	10.01.2016	39	183	992					
42	10.01.2016	40	140	1012					

II декада января 2016 г.

Японское море

В начале декады над Японским морем наблюдалась зимняя муссонная циркуляция. Скорость ветра была в пределах 8-13 м/с, высота волн -1-2 м, на востоке моря до 3 м.

13 января над морем проследовала ложбина, в области которой на западе акватории образовался неглубокий циклон. Последний перемещался на восток со скоростью 10–20 км, постепенно углубляясь, 14 числа через Японские острова перевалил в Тихий океан.

18 января южнее Японии перемещался глубокий циклон, его ложбина определяла погоду над южной частью Японского моря. В северо-западной части моря под высотным центром углубился до 988 гПа циклон. Циклон медленно (10–20 км/ч) перемещался на восток, юго-восток, постепенно заполняясь, 20 числа находился над островом Хонсю. Максимальная скорость ветра в Японском море, вызванная циклоном составляла 25–30 м/с, высота волн по данным РМЦ Токио достигала 7–8 м. Видимость при снеге понижалась до нескольких кабельтовых. До конца декады сохранялся сильный ветер 20–25 м/с, высота волн была 5–6 м, отмечались снежные заряды.

Охотское море

Во второй декаде существенных изменений в синоптической ситуации над Охотским морем не отмечалось, за исключением конца декады, когда на акваторию моря оказывал влияние глубокий циклон, перемещающийся над Тихим океаном. Минимальное давление в частных малоподвижных циклонах, которые возникали в области ложбины над акваторией моря, составляло 992 гПа. В течение декады отмечался общий рост давления над Охотским морем. Давление в центре циклона, расположенного на севере моря, в конце декады составляло 1020 гПа. Максимальная скорость ветра отмечалась в начале декады и составляла 18–23 м/с, высота волн при этом развивалась до 4–5 м.

В конце декады 19 января к южным Курилам с юга подошёл глубокий циклон с давлением в центре 968 гПа. Превратившись в малоподвижное барическое образование, он оставался в этом районе до конца декады. Ветер в Охотском море с этим процессом усиливался до 15–20 м/с, в южной части моря – до 23–28 м/с, высота волн на юге моря достигала 5–6 м, шел сильный снег при нулевой видимости.

Берингово море

Во второй декаде над Беринговым морем погодные условия, по-прежнему, определяли циклоны. В начале декады над центральной частью моря располагался малоподвижный циклон, он пришёл с Аляски, заполнился 13 числа. Минимальное давление в его центре составляло 972 гПа.

Следующий циклон со скоростью 20–30 км/ч перемещался вдоль Алеутских островов с 12 по 15 января. Минимальная глубина циклона – 972 гПа. 15 числа циклон вошёл в систему глубокого циклона над Аляской. Сформировавшаяся циклоническая система оказывала влияние на погодные условия Берингова моря до конца декады. Скорость ветра в первой половине декады не превышала 13–18 м/с, высота волн была в пределах 3–4 м. Во второй половине декады за счёт углубления циклона над Аляской над акваторией моря возросли барические градиенты, что

обусловило усиление ветра до 20–25 м/с, волнение моря развивалось до 5–6 м. На протяжении всей декады отмечались снежные заряды.

Северо-западная часть Тихого океана

10 января в районе Сангарского пролива образовался циклон с давлением в центре 1012 гПа. В течение 11–13 января циклон, углубляясь, со скоростью 40–50 км/ч перемещался на восток над северной частью акватории, 13 января находился на северо-востоке района глубиной 972 гПа. 14 января он начал заполняться и вышел за пределы района. Циклон вызвал усиление ветра до 25 м/с в северной половине района, волнение моря развивалось до 6–7 м, отмечались осадки в виде дождя и мокрого снега при видимости 2–4 км.

13 января на южную половину акватории вышел циклон с давлением в центре 994 гПа. Он образовался 11 января над Южно-Китайским морем. В течение суток циклон углублялся и быстро (70 км/ч) перемещался на восток-северо-восток, днем 14 января находился восточнее 180° долготы. Максимальная глубина циклона — 956 гПа. В южной половине района он вызвал усиление ветра до штормового 25–30 м/с, волнение моря развивалось до 7–8 м, прошли дожди.

14–17 января над северо-западной частью океана перемещались два циклона. Один из них с давлением в центре 1000 гПа вышел с акватории Японского моря южнее о. Хоккайдо. В течение двух суток он, слабо углубляясь, смещался на восток со скоростью 30 км/ч, 17 января пополнил обширный циклон, расположенный над Аляскинским заливом. Его максимальная глубина – 996 гПа. Второй циклон с давлением в центре 1008 гПа образовался на юге района на волне полярного фронта. Слабо углубляясь, в течение двух суток циклон смещался на восток со скоростью 30–40 км/ч, 16 января вышел за пределы района. Его максимальная глубина также была 996 гПа. Смещение этих циклонов обусловило усиление ветра до 18–23 м/с, волнение моря до 3–4 м, осадки в виде дождя на юге района и в виде мокрого снега и снега на севере района с ухудшением видимости до 1–3 км.

17 января погодные условия формировал гребень антициклона, который распространился на акваторию северо-западной части Тихого океана с северо-запада.

18 января на юго-запад акватории с Южно-Китайского моря вышел циклон с давлением в центре 990 гПа. В течение суток он, углубляясь, перемещался на северо-восток со скоростью 50 км/ч, 19 января находился юго-восточнее о. Хоккайдо глубиной 968 гПа. В течение следующих суток циклон стал малоподвижным и заполнялся в этом районе. Днем 20 января он оставался еще глубоким, с давлением в центре 976 гПа. Циклон вызвал штормовую погоду: ветер 25–30 м/с, волнение моря до 8 м, сильные осадки в виде дождя, мокрого снега и снега, ухудшающие видимость до 1000 м и менее.

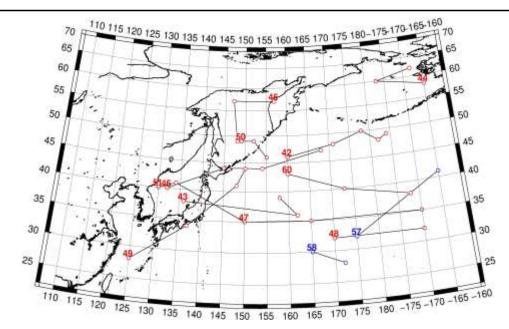


Рис. 1-2 Траектории движения циклонов и антициклонов во II декаде января

		Циклоны	[Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
42	11.01.2016	46	160	976	57	11.01.2016	32	175	1016		
	12.01.2016	48	171	972		12.01.2016	41	195	1016		
	13.01.2016	50	178	972	58	18.01.2016	30	165	1020		
	14.01.2016	48	182	978		19.01.2016	28	172	1020		
	15.01.2016	49	184	980							
43	12.01.2016	38	136	1006							
	13.01.2016	36	162	994							
	14.01.2016	39	158	956							
44	11.01.2016	58	195	972							
	12.01.2016	60	183	988							
	13.01.2016	62	192	984							
45	12.01.2016	57	157	990							
	13.01.2016	57	147	998							
	14.01.2016	49	148	1010							
46	13.01.2016	40	132	1012							
	14.01.2016	44	145	1000							
	15.01.2016	44	154	996							
	16.01.2016	47	168	998							
47	14.01.2016	35	150	1008							
	15.01.2016	35	165	1002							
	16.01.2016	35	190	996							
48	17.01.2016	32	170	1008							
	18.01.2016	32	190	1002							
49	17.01.2016	28	125	1004							
	18.01.2016	34	137	990							
	19.01.2016	41	148	968							
	20.01.2016	44	150	976							

	•						
50	16.01.2016	49	149	1008			
	17.01.2016	49	152	1008			
	18.01.2016	46	155	1016			
51	18.01.2016	40	130	1004			
	19.01.2016	41	134	992			
	20.01.2016	35	150	996			
60	17.01.2016	43	160	1010			
	18.01.2016	40	173	1004			
	19.01.2016	38	188	984			

III декада января 2016 г.

Японское море

В третьей декаде над Японским морем преобладала зимняя муссонная циркуляция. Ветры были преимущественно северных направлений 10-15 м/с, высота волн -2-3 м. Только 23-24 и 31 января над морем отмечался слабый циклогенез.

23 января в южной части моря под высотным центром углубился циклон до 1018 гПа. Он медленно, со скоростью 10–20 км/ч, перемещался в восточном направлении, углублялся и 24 января вошёл в систему тихоокеанского циклона с давлением в центре 1008 гПа. Другой циклон, возникший 24 января над центральной частью моря, с давлением в центре 1006 гПа в этот же день заполнился над Сангарским проливом.

Южный циклон вызвал усиление ветра до 25 м/c, высоту волн 3-4 м. Северный циклон обусловил ветра до 12-17 м/c, высоту волн 2-3 м.

31 января на юге моря возник ещё один частный циклон с давлением в центре 1024 гПа. Он перемещался на восток, юго-восток со скоростью 30 км/ч, в конце суток находился над южной частью острова Хонсю, не вызвав существенного усиления ветра.

Охотское море

В течение декады в Охотском море синоптическая ситуация существенно не менялась. Превалировал зимний муссон. Максимальная скорость ветра отмечалась в начале декады, определялась тыловой частью глубокого циклона, который перемещался южнее Курильских островов. Ветер усиливался до 15-20 м/c, в районе Курил — до 25 м/c, волнение моря развивалось до 3-4 м, на юге моря — до 5 м. В остальное время скорость ветра не превышала 13-18 м/c, высота волн была в пределах 2-3 м.

Иногда (27 и 28 января) в ложбине под высотным центром углублялись частные малоподвижные циклоны. На протяжении всей декады временами отмечались снежные заряды.

Берингово море

В первой половине и в середине декады основной циклогенез отмечался южнее Алеутских островов. Над Беринговым морем отмечались напряжённые барические градиенты, сформировавшиеся между циклонами южнее Алеутской гряды и над Аляской и полем высокого давления над Чукоткой и Якутией. Максимальная скорость ветра наблюдалась в начале декады, составляла 15–20 м/с, в западных районах моря до 20–25 м/с, волнение моря развивалось до 3–4 м, на западе акватории до 5 м.

В конце декады погодные условия формировались под влиянием глубокой депрессии, которая 31 января вышла на восточную часть моря с давлением в центре 966 гПа. Ветер усиливался до 18–23 м/с, высота волн составляла 3–4 м, вблизи восточной части Алеутской гряды – до 5 м, прошёл снег.

Северо-западная часть Тихого океана

В третьей декаде над акваторией северо-западной части Тихого океана, по-прежнему, наблюдалась активная циклоническая деятельность.

Циклон, который 20 января переместился с акватории Южно-Китайского моря в район о. Хоккайдо и углубился до 976 гПа, 21 января продолжал углубляться и медленно (10–20 км/ч) перемещался на восток, вышел в район 44° с. ш. 163° в. д., к юго-востоку от м. Лопатка. Его максимальная глубина — 960 гПа. В течение следующих трех суток циклон заполнялся и со скоростью 20–30 км/ч перемещаясь на восток, 24 января заполнился до 972 гПа и вышел за 180°, в восточный сектор океана. Циклон вызвал штормовой ветер до 25 м/с, волнение моря до 8 м, осадки в виде дождя, мокрого снега и снега с ухудшением видимости до 1000 м менее.

24 января на запад акватории с Японского моря вышел следующий циклон с давлением в центре 992 гПа. В течение двух суток он, углубляясь, со скоростью 40-50 км/ч смещался на восток-северо-восток, 26 января находился на востоке района глубиной 960 гПа. 27 января он вышел за 180° долготы. Циклон обусловил усиление ветра до 25-30 м/с, волнение моря 8-10 м, сильные осадки в виде дождя и мокрого снега с ухудшением видимости до 1-3 км.

В период 27–28 января северо-западная часть Тихого океана находилась под воздействием высоко-градиентной периферии алеутской депрессии. На северо-востоке акватории сохранялся сильный северо-западный ветер 18–23 м/с, волнение моря составляло 5–6 м, временами отмечались осадки в виде снега и мокрого снега, видимость при осадках понижалась до 1–3 км, в районе Курильских островов и у восточного побережья Камчатки наблюдалось обледенение судов.

24–28 января к юго-востоку от Камчатки располагался малоподвижный циклон с давлением в центре 998–992 гПа. 29–31 января циклон углублялся, начал перемещаться на восток, 31 января находился южнее центральной части Алеутских островов глубиной 970 гПа. Циклон вызвал усиление северо-западного ветра до 25 м/с в северо-восточном секторе акватории, волнение моря возрастало до 7 м, снежные заряды ухудшали видимость до 1–3 км.

27—29 января через юго-восточную часть района с акватории Восточно-Китайского моря со скоростью 40 км/ч на восток-юго-восток проследовал антициклон с давлением в центре 1032 гПа. 29 января в район о. Кюсю с Восточно-Китайского моря вышел циклон с давлением в центре 1018 гПа. В течение 30—31 января он, углубляясь, со скоростью 50—70 км/ч перемещался над южной часть района (южнее 40° с. ш.), 31 января находился в районе 34° с. ш. 154° в. д. глубиной 1008 гПа. Циклон вызвал усиление ветра до 18—23 м/с, волнение моря развивалось до 5 м, прошли дожди.

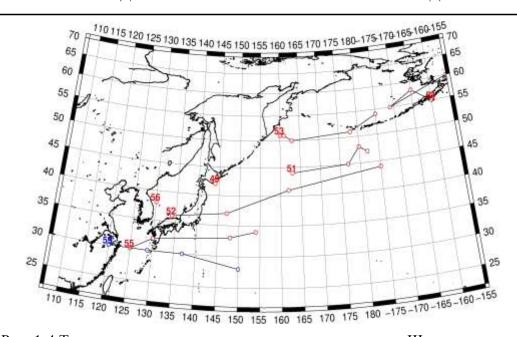


Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде января

		Циклоны	Ī		Антициклоны						
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление		
49	21.01.2016	42	144	984	59	26.01.2016	30	120	1034		
51	21.01.2016	44	163	960		27.01.2016	30	129	1030		
	22.01.2016	45	177	964		28.01.2016	30	137	1032		
	23.01.2016	48	180	980		29.01.2016	28	150	1026		
	24.01.2016	47	182	972							
52	23.01.2016	36	134	1018							
	24.01.2016	37	147	992							
	25.01.2016	41	162	968							
	26.01.2016	44	185	956							
53	24.01.2016	51	160	998							
	25.01.2016	51	160	988							
	26.01.2016	51	160	988							
	27.01.2016	51	161	998							
	28.01.2016	51	161	992							
	29.01.2016	50	163	982							
	30.01.2016	51	178	972							
	31.01.2016	54	185	970							
54	26.01.2016	55	200	960							
	27.01.2016	58	195	964							
	28.01.2016	55	189	972							
	29.01.2016	60	205	972							
55	28.01.2016	30	125	1020							
	29.01.2016	32	130	1018							
	30.01.2016	33	148	1012							
	31.01.2016	34	154	1008							
56	31.01.2016	38	130	1024							

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных анализа NCEP/NCAR и приведены ниже (рис. 1-5–1-7). Анализ термобарических полей сделан на базе средних за месяц карт геопотенциала на стандартном изобарическом уровне 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа.

Японское море

В январе термобарическое поле средней тропосферы над Дальним Востоком претерпело значительную перестройку по сравнению с декабрем. Над Сибирью сформировался устойчивый барический гребень, в передней части которого у земной поверхности сложились благоприятные условия для антициклогенеза. Ему соответствовал гребень тепла со значительными аномалиями геопотенциала. Охотское и Берингово моря были заняты обширными депрессиями с дефицитом тепла, южнее которых над умеренной зоной побережья материка и над Тихим океаном располагалась высоко-градиентная зона — высотная фронтальная зона с огромным запасом потенциальной энергии (термический и барический межширотные градиенты были значительны, зачастую превышали средние многолетние характеристики). Акватория Японского моря также находилась под влиянием высотной фронтальной зоны с основным направлением ведущего потока с запада, северо-западе на восток. Значения геопотенциальных высот поверхности Н₅₀₀ над северной частью моря были ниже нормы на 1–4 дам, юго-восток был занят положительными аномалиями геопотенциальных высот до 1–2 дам.

Распределение атмосферного давления у поверхности земли над материком имело следующие особенности. Над бассейном Енисея поле давления поменяло знак – взамен пониженного барического рельефа, которое имело место в декабре, сюда распространился гребень антициклона. Аномалии атмосферного давления над этим районам значительные, до +19 гПа. Западная часть бассейна Лены также занята положительными аномалиями атмосферного давления до 1-3 гПа. Азиатский антициклон, занимая традиционное положение над Монголией, развит сильнее обычного. Давление в его области выше нормы на 8-10 гПа. Ленско-колымское ядро в январе разрушилось (аномалии давления в его зоне отрицательные до -1--3 гПа). Алеутская депрессия, как и в ноябре-декабре, очень активна, давление в ней ниже нормы на 15 гПа, незначительно смещена к востоку по отношению к среднему многолетнему положению. Большая часть акватории Тихого океана (северного полушария) находилась под влиянием алеутской депрессии. Северные и, в особенной мере, северо-восточные районы океана заняты значительными отрицательными аномалиями атмосферного давления. Положительные аномалии до 1-3 гПа сохранились лишь над юго-западным тропическим сектором океана. Над Японским морем в среднем за месяц атмосферное давление близко к норме, аномалии давления не превышают 1 гПа, профиль поля соответствует норме – умеренно градиентное поле между азиатским антициклоном и алеутской депрессией.

Температура воздуха в нижней тропосфере на уровне H_{850} над акваторией моря распределена от -4 °C на юге до -22° C на севере моря. В течение месяца она понизилась на 4–7 °C. Для северной половины моря это состояние ниже нормы на 1–2 °C.

Охотское море

В январе над акваторией Охотского моря в средней тропосфере располагалась обширная депрессия, что не является редкостью для этого месяца. Однако ее глубина и устойчивость сформировали аномалии геопотенциальных высот (следовательно, и средней температуры слоя) до -4—-5 дам, лишь над южными районами моря аномалии чуть меньше — до -2 дам.

У земли над Охотским морем поле давления на средней за месяц карте носит циклонический характер в виде ложбины, что соответствует норме. Атмосферное давление над большей частью моря ниже среднего многолетнего на 1–3 гПа, лишь на юге близко к норме.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} в среднем за месяц распределена от -16 °C на юге до -24 °C на северо-западе моря, за месяц понизилась на 4–7 °C. Это состояние ниже нормы на 1–2 °C для большинства районов моря.

Берингово море

В январе в средней тропосфере над Беринговым морем располагалась устойчивая депрессия. Геопотенциальные высоты уровня H_{500} над большей частью акватории ниже нормы, на юге достигают наибольших отклонений от нормы – -11 дам.

У земной поверхности вся акватория моря также в области очень глубокой депрессии. Атмосферное давление ниже нормы на 4–14 гПа. Максимальные отклонения от нормы сложились над юго-восточным сектором моря. Следует отметить, что алеутская депрессия, по-прежнему, оставалась аномально развитой, но по отношению к ноябрю-декабрю с акватории Берингова моря сместилась к юго-востоку, находилась южнее восточной части Алеутской гряды.

Температура воздуха на уровне H_{850} над акваторией моря распределена от -4 °C на юговостоке моря до -15 °C на северо-западе, за месяц почти не изменилась. Это состояние выше нормы на 1–6 °C для большей части моря с максимальными отклонениями от нормы на северовостоке моря, лишь на юго-западе температура нижнего слоя тропосферы ниже нормы на 1 °C.

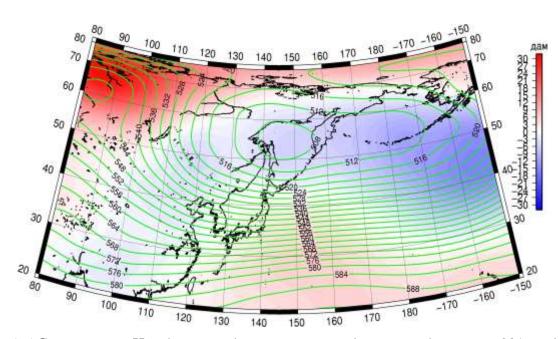


Рис. 1-5 Среднее поле H_{500} (изогипсы) и его аномалия (изополосы) в январе 2016 г. (дам)

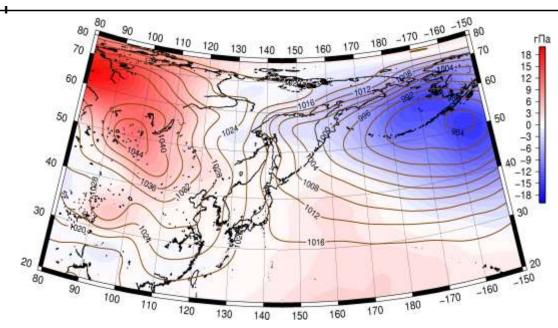


Рис. 1-6 Среднее поле давления у поверхности земли (изобары) и его аномалия (изополосы) в январе 2016 г. (г Π а)

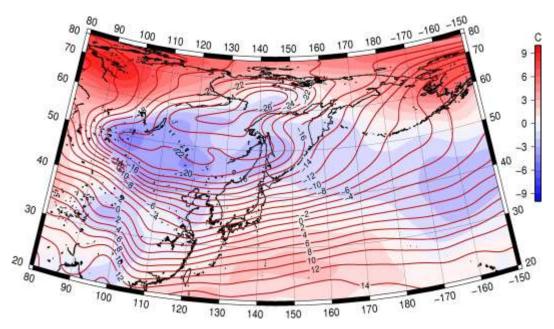


Рис. 1-7 Среднее поле T_{850} (изотермы) и его аномалия (изополосы) в январе 2016 г. (°С)

1.3 Глобальные и региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е.с.р.

Характеристика основных воздушных течений в средней и нижней тропосфере за январь 2016 г. сделана на основе индексов циркуляции, приведенных ниже в таблице и на рис. 1-8–1-10. В данном разделе принята следующая терминология для характеристики индексов: норма $-\pm 0,3$ STD относительно нормы; незначительное отклонение от нормы $-\pm 0,4$ –0,7 STD относительно нормы; значительное отклонение от нормы $-\ge 2$ STD относительно нормы.

Японское море

В январе над акваторией Японского моря интенсивность западно-восточного переноса воздуха незначительно превышала норму в среднем слое тропосферы и была близка к норме у поверхности земли (Кz составляет 0,7STD и 0,2STD в среднем слое и у поверхности земли, соответственно). Во всем слое тропосферы господствовал западно-восточный перенос воздуха (значения индексов Кz положительные). В зоне умеренных широт над II е. с. р. зональные течения в средней тропосфере были интенсивнее обычного (Кz составляет 1,0STD), у поверхности земли незначительно превышали норму (Кz составляет 0,7STD); господствующим оставался перенос воздуха с запада на восток (значения индексов Кz положительные).

Межширотный обмен над Японским морем в средней тропосфере был слабее обычного (|Km| составляет -0,9STD), что определялось ослаблением воздушных течений с севера (Кm составляет 0,8STD). У земной поверхности межширотный обмен незначительно превышал норму (|Km| составляет 0,4STD) за счет незначительного усилениея по отношению к норме воздушных течений с севера (Кm составляет -0,4STD). Во всем слое тропосферы в течение месяца преобладал перенос с севера на юг (значения индексов отрицательные).

Над умеренной зоной II е. с. р. в целом за месяц межширотный обмен в среднем слое тропосферы был слабым (|Km| составляет -1,3STD), что определялось деградацией переноса воздуха с юга (Кт составляет -1,5STD). У земной поверхности наоборот, межширотный обмен был интенсивнее обычного (|Km| составляет 1,2STD) за счет сильных вторжений воздуха с севера (Кт составляет -1,5STD). Во всем слое тропосферы преобладал перенос с севера (значения индексов отрицательные).

Охотское море

Над акваторией Охотского моря интенсивность западно-восточного переноса воздуха в средней тропосфере была в пределах нормы (Kz составляет 0,2STD), преобладал перенос воздуха с запада на восток (значение индекса положительное). У земной поверхности преобладали воздушные течения с востока на запад (значение индекса отрицательное), и они были незначительно слабее обычного (Kz составляет 0,5STD). В зоне 50–70° с. ш. над II е. с. р. в среднем слое тропосферы преобладал перенос воздуха с востока на запад (значение индекса отрицательное) с превышением нормы (Kz составляет -1,5STD). В нижнем слое тропосферы также преобладали течения с востока на запад (значение индекса отрицательное), их интенсивность близка к норме (Kz составляет -0,3STD).

Межширотный обмен над акваторией Охотского моря в средней тропосфере был незначительно слабее обычного (|Km| составляет -0,6STD) за счет слабых воздушных течений с юга (Кт составляет -0,5STD). У земной поверхности межширотный обмен незначительно превышал норму (|Km| составляет 0,4STD), что определялось более интенсивными, чем обычно течениями воздуха с севера (|Km| составляет -0,4STD). В среднем слое незначительно преобладал перенос воздуха с юга (значение индекса положительное), у земной поверхности — с севера (значение индекса отрицательное).

В зоне 50– 70° с. ш. над II е. с. р. межширотный обмен в тропосфере превышал норму, в нижнем слое значительно (|Km| составляет 1,6STD и 3,4STD в среднем и нижнем слоях тропосферы, соответственно), что определялось значительным усилением воздушных течений с севера (Km составляет -2,6STD и -3,2STD в среднем и нижнем слоях тропосферы, соответственно). Во всем слое преобладающим был перенос воздуха с севера на юг (значения индексов отрицательные).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

11	Уровень	Н	оябрь 201	.5	Į	(екабрь 20	15	Январь 2016		
Индекс*	(высота)	значение	ASTD**	STD**	ASTD	ASTD**	STD**	значение	ASTD**	STD**
Кz Ям		24184	-0.5	3989	23857	-0.5	3775	27119	0.7	3921
Кz Ом		17238	0.8	3825	11839	0.6	4744	6197	0.2	4807
Кz Бм		19697	1.8	4909	8305	0.4	5078	-479	-0.7	4567
Kz 35_50		24067	-0.1	2957	25352	0.4	2945	25063	1.0	3249
Kz 50_70		8518	0.3	3131	6420	0.4	2894	-1321	-1.5	3146
Kz 35_70		14836	0.0	1292	14682	0.6	1757	10401	-0.7	2024
Кт Ям		800	1.0	1829	-2952	-0.1	1609	-2795	0.8	1376
Кт Ом		-656	-1.2	1822	-2040	-2.2	1450	295	-0.5	1829
Кт Бм	500 allo	1998	0.2	1598	1621	-0.5	1599	1582	-0.7	1249
Km 35_50	500 гПа	427	1.4	653	-919	0.0	792	-2433	-1.5	957
Km 50_70		-613	-0.5	579	-1010	-1.1	698	-2057	-2.6	737
Km 35_70		-176	0.4	522	-909	-0.7	581	-2195	-2.4	724
Кт Ям		1691	-1.2	1383	4263	-0.2	1559	4005	-0.9	1680
Кт Ом		2463	-0.6	1920	3463	0.2	1761	2484	-0.6	1969
Кт Бм		4215	0.0	2135	3808	-0.5	2329	2998	-1.0	1787
Km 35_50		3024	-1.2	1302	4068	-1.3	960	4433	-1.3	843
Km 50_70		3218	-1.0	1313	3610	-1.0	1200	6837	1.6	1304
Km 35_70		3145	-1.1	1170	3720	-1.3	949	5770	0.8	887
Кz Ям		-2099	-3.5	1241	1837	0.1	1185	1037	0.2	1500
Кz Ом		1222	0.0	1455	-399	0.4	2105	-1539	0.5	2234
Кz Бм		6727	1.8	2861	517	0.9	3331	-3794	0.4	2691
Kz 35_50		1467	-2.0	1133	5400	1.2	1286	3652	0.7	1684
Kz 50_70		1664	0.9	1548	-592	0.1	1624	-1998	-0.3	1722
Kz 35_70		1321	-0.4	664	1750	0.5	997	330	0.1	1171
Кт Ям		-2501	1.1	769	-4225	0.7	869	-5794	-0.4	970
Кт Ом		-2582	-0.1	1261	-4107	-0.3	1155	-4626	-0.4	1147
Кт Бм	1000 гПа	-1066	-0.6	1087	-1849	-1.3	1094	-2638	-2.3	944
Km 35_50	1000 111a	-235	2.4	433	-1857	0.2	558	-3228	-1.5	687
Km 50_70		-1409	-0.8	422	-1557	-0.7	479	-2919	-3.2	518
Km 35_70		-890	0.6	354	-1627	-0.4	408	-2983	-2.6	530
Кт Ям		3435	-1.1	1050	5785	-0.7	1183	7905	0.4	1321
Кт Ом		4423	-0.3	1391	6831	0.3	1756	7617	0.4	1798
Кт Бм		3597	0.5	1371	5475	1.6	1355	5032	1.4	1378
Km 35_50		2044	-1.7	480	2986	-1.5	532	5089	1.2	691
Km 50_70		3829	1.0	534	4705	1.6	681	5792	3.4	648
Km 35_70		3084	0.0	431	3911	0.5	543	5414	2.8	576

^{*} Описание индексов приведено в разделе «Терминология».

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1971–2000 гг.

Берингово море

Над акваторией Берингова моря в январе в среднем слое тропосферы интенсивность западно-восточного переноса воздуха была незначительно ниже нормы (Kz составляет -0,7STD), преобладал перенос воздуха с востока на запад (значение индекса отрицательное). В нижнем слое также преобладал перенос воздуха с востока на запад (значение индекса отрицательное), его интенсивность была незначительно ниже нормы (Kz составляет 0,4STD).

Межширотный обмен над акваторией моря в средней тропосфере был слабее обычного (|Km| составляет -1,0STD), что в большей мере определялось ослаблением переноса воздуха с юга (Кm составляет -0,7STD). У земной поверхности межширотный обмен превысил норму (|Km| составляет 1,4STD), что определялось значительным усилением воздушных течений с севера (Кm составляет -2,3STD). В среднем слое тропосферы преобладал перенос воздуха с юга (значение индекса положительное), у земной поверхности — с севера (значение индекса отрицательное).

Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кm) в нижней тропосфере над дальневосточными морями

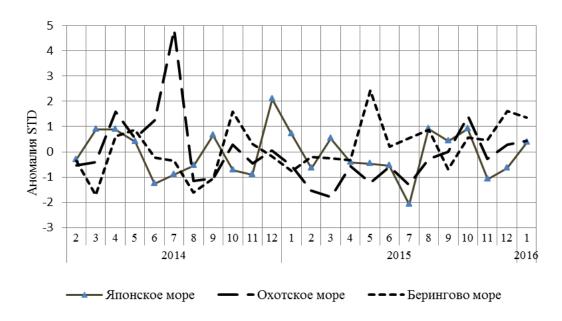


Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.4 Аналог погоды на январь 2016 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей давления воздуха у земли и геопотенциала H_{500} для II е. с. р. Объективным критерием подбора является коэффициент корреляции. Учитывается динамика процесса: используются поля за предшествующие месяцы с весовыми коэффициентами.

Дата аналога для января 2016 г. – январь 1998 г.

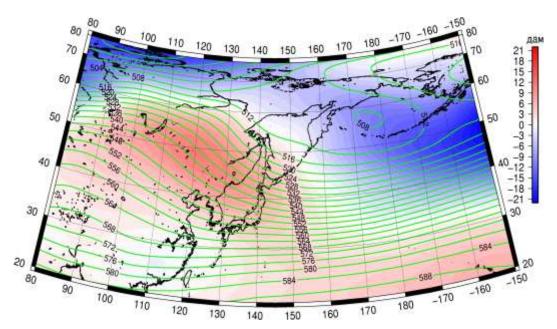


Рис. 1-11 Среднее поле H_{500} (изолинии) и его аномалия (изополосы) в феврале 1998 г. (дам)

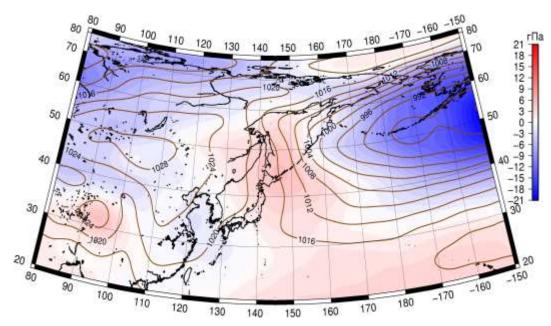


Рис. 1-12 Среднее поле давления у поверхности земли (изолинии) и его аномалия (изополосы) в феврале 1998 г. (гПа)

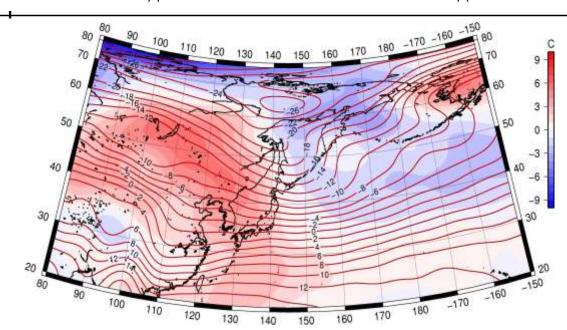


Рис. 1-13 Среднее поле T_{850} (изолинии) и его аномалия (изополосы) феврале 1998 г. (°С)