## 1 Метеорологические условия

#### 1.1 Синоптический обзор

Кинематические карты, рис. 1-2–1-4, содержат положение циклонов (красный цвет) и антициклонов (синий цвет) на 00 BCB каждых суток декады и траектории их смещения. За барическими объектами закреплен номер, по которому из ниже следующих таблиц можно определить точные координаты и давление в центре объекта в срок 00 BCB.

I декада августа 2018 г.

## Японское море

В самом начале декады над северной частью моря проследовала ложбина с фронтальным разделом, ориентированная от циклона над Хабаровским краем. З августа на акваторию моря с районов Китая скатилось ядро с давлением в центре 1010 гПа. Смещаясь на юго-восток со скоростью 20 км/ч, 4 августа оно разрушилось вблизи южных островов Японии.

5 числа на центральную часть моря вышел циклон с давлением в центре 1002 гПа. В конце суток 5 августа он перевалил через остров Хонсю, вышел на северо-западную часть Тихого океана. Минимальное давление в центре циклона -1000 гПа. Скорость ветра в первой половине декады не превышала 7-12 м/с, волнение было в пределах 1-2 м.

6 августа на акваторию моря вышел антициклон с давлением в центре 1002 гПа. Он быстро вошел в систему антициклона, стационирующего над центральными островами Курильской гряды. Поле высокого давления над большей частью Японского моря сохранялось до конца декады, за исключением юго-восточных районов моря, здесь в конце декады сказывалось влияние тайфуна SHANSHAN. 9 августа тайфун SHANSHAN с давлением в центре 975 гПа приблизился к району Токио, двигаясь вблизи тихоокеанского побережья Японии. Над Японским морем существенного ухудшения погодных условий не наблюдалось.

В течение декады местами отмечались туманы.

#### Охотское море

В первой половине декады над Охотским морем превалировала циклоническая деятельность. 1 августа на акваторию моря с Хабаровского края вышел циклон с давлением в центре 994 гПа. Смещаясь на восток со скоростью 30 км/ч, в конце суток он через северные Курилы переместился в Тихий океан, вызвав усиление ветра до 8—13 м/с, волнение до 1 м.

2 августа с Колымы на северо-западную часть акватории вышел неглубокий циклон с давлением в центре 998 гПа. Смещаясь на юго-восток со скоростью 20 км/ч, 4 августа он через центральные Курилы переместился в Тихий океан, также не вызвав существенного ухудшения погодных условий.

В дальнейшем и до конца декады над морем установилось малоградиентное поле повышенного давления. 7 числа на юге акватории сформировался малоподвижный антициклон с давлением в центре 1020 гПа, центр которого располагался над центральными Курилами. В последующие дни ядро со скоростью 20–30 км/ч перемещалось на восток над акваторией Тихого океана.

#### Берингово море

В начале декады над Беринговым морем наблюдалось поле низкого давления. Один из циклонов с давлением в центре 1002 гПа находился на севере акватории, 2 числа он переместился на Аляску. Другой циклон образовался на юге моря 2 августа с давлением в центре 998 гПа и быстро заполнился. Ещё один циклон с давлением в центре 996 гПа 3 числа вышел на акваторию моря через Командорские острова, начал перемещаться на север, 5 числа находился в районе Олюторского залива. Затем, заполняясь, перемещался на северо-восток вдоль северного побережья

моря, 7 августа вышел на Аляску с давлением в центре 1012 г $\Pi$ а. Циклон обусловил усиление ветра до 12-17 м/с, высоту волн 2-3 м, осадки.

7–9 августа над большей частью акватории установилось поле повышенного давления, и только в конце декады на восточную част моря с юга вышел циклон с давлением в центре 1000 гПа. К Командорским островам в этот момент вышел ещё один неглубокий циклон с давлением в центре 1008 гПа. Циклоны не вызвали существенного ухудшения погодных условий.

#### Северо-западная часть Тихого океана

В начале августа восточная часть района находилась под воздействием гребня тихоокеанского антициклона, давление в области которого достигало 1027 гПа. 2 августа на север района с акватории Охотского моря переместился циклон с давлением в центре 998 гПа. В течение суток циклон, слабо углубляясь, медленно (со скоростью 20 км/ч) перемещался на восток, 3 августа подошёл к юго-западной границе Берингова моря с давлением в центре 996 гПа. На юг района 1 августа из тропической зоны переместилась тропическая депрессия с давлением в центре 1002 гПа. В течение двух суток она без изменения давления перемещалась на север, 3 августа на севере района объединилась с внетропическим циклоном, 4 августа вышла на акваторию Берингова моря. 4 августа с Охотского моря переместился ещё один неглубокий циклон с давлением в центре 1004 гПа. Он заполнился через сутки. В области перечисленных циклонов 1–4 августа на западе района наблюдались усиление южного ветра 15–20 м/с, волнение моря до 3–4 м, дожди.

5 августа на юго-восток района с тропиков вышла депрессия с давлением в центре 1010 гПа. Она медленно (со скоростью 10 км/ч) смещалась на север и к концу суток заполнилась. На юго-востоке района отмечались усиление ветра до 15 м/с, волнение моря до 5 м, дожди.

6 августа с акватории Японского моря на северо-западную часть Тихого океана переместился циклон с давлением в центре 1002 гПа. В течение двух суток он медленно заполнялся, перемещался на северо-восток со скоростью 30 км/ч, 8 августа находился на северо-востоке района, заполнившись до 1010 гПа. В течение следующих двух суток циклон начал углубляться, со скоростью 30 км/ч перемещался на восток. 10 августа давление в его центре составляло 1000 гПа, и он вышел в восточный сектор Тихого океана, за пределы описываемого района. Циклон вызвал усиление ветра до 15 м/с, волнение моря 3–4 м, дожди.

7 августа на юго-запад района вышел тайфун SHANSHAN с давлением в центре 970 гПа. В течение суток тайфун со скоростью 20 км/ч перемещался на север-северо-запад без изменения давления, 8 августа приблизился к о. Хонсю. В течение следующих суток он продолжал медленно (10–15 км/ч) перемещаться на север-северо-запад вдоль восточного побережья о. Хонсю, прошел точку поворота, заполнившись 9 августа до 975 гПа. В дальнейшем он заполнялся, увеличил скорость перемещения, двигаясь на север-северо-восток. 10 августа он перешел в стадию тропического шторма, заполнившись до 992 гПа, приблизился к юго-восточному побережью о. Хоккайдо. Вблизи центра тайфуна наблюдался максимальный ветер до 35 порывами 50 м/с, волнение моря развивалось до 8 м, отмечались очень сильные дожди.

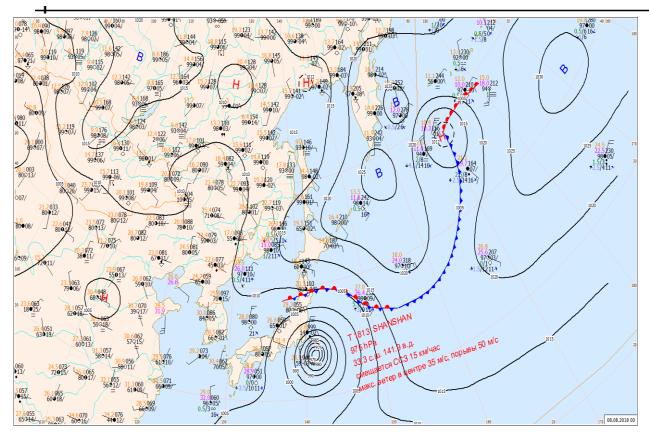



Рис. 1-1 Приземная карта за 00 ВСВ 8 августа 2018 г.

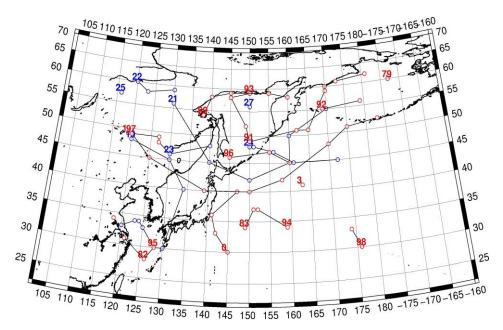



Рис. 1-2 Траектории движения циклонов и антициклонов в I декаде августа

|       |            | Циклоны | [       |          |            | A          | <b>А</b> НТИЦИКЛО | ны      |          |
|-------|------------|---------|---------|----------|------------|------------|-------------------|---------|----------|
| Номер | Дата       | Широта  | Долгота | Давление | Номер      | Дата       | Широта            | Долгота | Давление |
| 79    | 01.08.2018 | 60      | 187     | 1000     | 19         | 01.08.2018 | 48                | 120     | 1012     |
| 82    | 01.08.2018 | 28      | 126     | 990      |            | 02.08.2018 | 45                | 130     | 1010     |
|       | 02.08.2018 | 28      | 126     | 990      |            | 03.08.2018 | 40                | 134     | 1010     |
|       | 03.08.2018 | 31      | 121     | 994      |            | 04.08.2018 | 30                | 130     | 1010     |
|       | 04.08.2018 | 34      | 118     | 1000     |            | 05.08.2018 | 30                | 128     | 1010     |
| 83    | 01.08.2018 | 34      | 149     | 1002     |            | 06.08.2018 | 33                | 125     | 1008     |
|       | 02.08.2018 | 37      | 151     | 1002     |            | 07.08.2018 | 33                | 125     | 1008     |
| 91    | 01.08.2018 | 49      | 150     | 994      |            | 08.08.2018 | 34                | 124     | 1008     |
|       | 02.08.2018 | 51      | 162     | 996      |            | 09.08.2018 | 34                | 123     | 1008     |
|       | 03.08.2018 | 51      | 165     | 996      |            | 10.08.2018 | 33                | 120     | 1006     |
|       | 04.08.2018 | 59      | 170     | 996      | 21         | 03.08.2018 | 56                | 130     | 1014     |
|       | 05.08.2018 | 60      | 170     | 998      |            | 04.08.2018 | 45                | 140     | 1010     |
|       | 06.08.2018 | 61      | 173     | 1002     |            | 05.08.2018 | 42                | 150     | 1010     |
|       | 07.08.2018 | 62      | 181     | 1012     |            | 06.08.2018 | 45                | 160     | 1014     |
| 92    | 01.08.2018 | 55      | 169     | 996      |            | 07.08.2018 | 50                | 160     | 1022     |
|       | 02.08.2018 | 56      | 179     | 998      |            | 08.08.2018 | 55                | 170     | 1024     |
| 93    | 01.08.2018 | 59      | 150     | 994      | 22         | 05.08.2018 | 60                | 120     | 1020     |
|       | 02.08.2018 | 58      | 145     | 998      |            | 06.08.2018 | 58                | 123     | 1012     |
|       | 03.08.2018 | 52      | 149     | 1004     |            | 07.08.2018 | 59                | 130     | 1012     |
|       | 04.08.2018 | 49      | 150     | 1004     | 23         |            |                   | 130     | 1012     |
| 94    | 01.08.2018 | 34      | 159     | 992      | 07.08.2018 |            | 48                | 140     | 1020     |
|       | 02.08.2018 | 37      | 152     | 1002     | 24         | 06.08.2018 | 48                | 150     | 1018     |
| 95    | 01.08.2018 | 30      | 128     | 990      |            | 07.08.2018 | 48                | 151     | 1020     |
|       | 02.08.2018 | 28      | 126     | 990      |            | 08.08.2018 | 47                | 156     | 1024     |
|       | 03.08.2018 | 31      | 121     | 994      |            | 09.08.2018 | 45                | 161     | 1022     |
|       | 04.08.2018 | 34      | 118     | 1000     |            | 10.08.2018 | 45                | 172     | 1014     |
| 96    | 03.08.2018 | 46      | 145     | 1004     | 25         | 10.08.2018 | 57                | 116     | 1016     |
|       | 04.08.2018 | 47      | 155     | 1004     | 27         | 10.08.2018 | 56                | 150     | 1014     |
|       | 05.08.2018 | 45      | 160     | 1004     |            |            |                   |         |          |
| 97    | 03.08.2018 | 49      | 120     | 998      |            |            |                   |         |          |
|       | 04.08.2018 | 45      | 125     | 1002     |            |            |                   |         |          |
|       | 05.08.2018 | 40      | 139     | 1002     |            |            |                   |         |          |
|       | 06.08.2018 | 40      | 150     | 1002     |            |            |                   |         |          |
|       | 07.08.2018 | 42      | 158     | 1008     |            |            |                   |         |          |
|       | 08.08.2018 | 48      | 170     | 1012     |            |            |                   |         |          |
|       | 09.08.2018 | 51      | 175     | 1004     |            |            |                   |         |          |
|       | 10.08.2018 | 52      | 183     | 1000     |            |            |                   |         |          |
| 98    | 04.08.2018 | 30      | 176     | 1010     |            |            |                   |         |          |
|       | 05.08.2018 | 33      | 174     | 1010     |            |            |                   |         |          |
| 99    | 06.08.2018 | 54      | 138     | 1006     |            |            |                   |         |          |
|       | 07.08.2018 | 58      | 140     | 1006     |            |            |                   |         |          |
|       | 08.08.2018 | 59      | 145     | 1012     |            |            |                   |         |          |
|       | 09.08.2018 | 59      | 155     | 1010     |            |            |                   |         |          |

|    |            | Циклоны | [   |      | Антициклоны |
|----|------------|---------|-----|------|-------------|
|    | 10.08.2018 | 58      | 160 | 1008 |             |
| 00 | 07.08.2018 | 30      | 145 | 970  |             |
|    | 08.08.2018 | 33      | 142 | 970  |             |
|    | 09.08.2018 | 36      | 141 | 975  |             |
|    | 10.08.2018 | 40      | 147 | 992  |             |
| 01 | 07.08.2018 | 49      | 119 | 1004 |             |
|    | 08.08.2018 | 49      | 127 | 1008 |             |
|    | 09.08.2018 | 48      | 127 | 1006 |             |
|    | 10.08.2018 | 46      | 130 | 1004 |             |
| 03 | 10.08.2018 | 41      | 163 | 1004 |             |

II декада августа 2018 г.

## Японское море

В начале декады через акваторию моря проследовал антициклон с давлением в центре  $1012 \, \mathrm{r\Pi a}$ , определяя умеренный ветер  $6-11 \, \mathrm{m/c}$ , волнение моря  $1-2 \, \mathrm{m}$ , местами туман, ухудшающий видимость до  $1000 \, \mathrm{m}$  и менее.

13–15 августа над северной частью акватории располагался стационарный атмосферный фронт, в зоне которого наблюдались свежий ветер 9–14 м/с, умеренное волнение 1–2 м, дожди.

16 августа на северо-востоке моря, у западного побережья о. Хоккайдо, на волне полярного фронта образовался циклон с давлением в центре 1002 гПа. 16 августа циклон переместился на северо-западную часть Тихого океана, углубившись до 994 гПа. В период 16—17 августа за счет градиентов, образовавшихся в зоне углубляющегося циклона и смещающегося с севера антициклона с давлением в центре 1022 гПа, на большей части акватории произошло усиление до 15—20 м/с северо-восточного, северного ветра, волнение развивалось до 2—3 м.

18 августа через Японское море со скоростью 20–30 км/ч на восток проследовал антициклон с давлением в центре 1014 гПа. 19–20 августа акватория моря находилась под воздействием гребня тихоокеанского антициклона. Эти процессы определяли умеренный ветер 6–11 м/с, умеренное волнение моря 0,5–1,5 м, местами туман при видимости менее 1000 м.

#### Охотское море

11 августа над акваторией Охотского моря наблюдалось поле повышенного давления. Ветер был слабый до умеренного 3–8 м/с, волнение незначительное, 0,5–1,0 м.

12 августа на акваторию моря с Приамурья вышел неглубокий циклон с давлением в центре  $1006 \, \text{гПа}$ . В течение суток циклон медленно (со скоростью  $10–20 \, \text{км/ч}$ ) смещался без развития на восток, затем оставался малоподвижным над центральной частью моря;  $16 \, \text{августа}$  он заполнился. Циклон обусловил небольшие дожди, свежий ветер  $8–13 \, \text{м/c}$ , волнение моря  $1–2 \, \text{м}$ .

17 августа к Южным Курилам вышел циклон с давлением в центре 994 гПа. Он образовался накануне вблизи о. Хоккайдо на волне полярного фронта. В течение трех суток циклон, слабо углубляясь, со скоростью 20–30 км/ч смещался вдоль Курильских островов на северо-восток, 20 августа вышел к восточному побережью п-ова Камчатка глубиной 988 гПа. 17–18 августа южная половина, а 19–20 августа большая часть акватории Охотского моря были под воздействием данного циклона. Наблюдались северо-восточный ветер 15–20 м/с, волнение 3–4 м, дожди.

## Берингово море

В течение декады над западной половиной моря преобладало поле повышенного давления. Здесь наблюдались умеренный ветер  $6-11\,$  м/с, умеренное волнение  $0,5-1,5\,$  м, туманы при видимости менее  $1000\,$  м.

На восточную половину моря оказали влияние два циклона. Один из них 12 августа сместился с северо-западной части Тихого океана на юго-восток Берингова моря глубиной 988 гПа. В течение суток он, углубляясь, со скоростью 30–40 км/ч смещался на север-северовосток через восточную часть акватории моря, 13 августа вышел на полуостров Аляска с давлением в центре 982 гПа. Над восточной частью моря циклон вызвал усиление северного ветра до 18–23 м/с, волнение моря до 5 м, дожди. В течение 13–15 августа восточная часть акватории испытывала влияние тыловой части этого циклона, который медленно заполнялся над полуостровом Аляска.

16-18 августа над всей акваторией установилось поле повышенного давления. Наблюдался умеренный ветер 6-11 м/с и умеренное волнение 0,5-1,5 м.

19 августа на погодные условия юго-восточной части моря оказал влияние циклон с давлением в центре 986 гПа, который смещался с северо-западной части Тихого океана на Аляскинский залив. В этой части моря наблюдались сильный северо-восточный, северный ветер 15–20 м/с, волнение 3–4 м, дожди.

#### Северо-западная часть Тихого океана

В начале декады, 11–13 августа, через центральную часть района проследовали 4 циклона; три из них неглубокие с давлением в центре 1004–1008 гПа, не вызвали существенных ухудшений погоды. Ещё один циклон с давлением в центре 996 гПа 11 августа обусловил усиление ветра до 15–20 м/с, волнение моря развивалось до 3–4 м, отмечались дожди.

14-17 августа над большей частью акватории установилось поле повышенного давления  $1020-1032\ \Gamma\Pi a$ .

15–16 августа с акватории Охотского моря через северную часть района проследовала двухцентровая область пониженного давления с минимальным давлением 1004 гПа, в области которой наблюдались свежий ветер до 9–14 м/с, волнение 2–3 м, небольшие дожди. Над южной частью района располагалось поле повышенного давления 1018–1022 гПа.

17 августа на северо-западную часть Тихого океана, к юго-востоку от о. Хоккайдо, с акватории Японского моря вышел циклон с давлением в центре 994 гПа. В течение трех суток циклон, углубляясь, со скоростью 30 км/ч перемещался на северо-восток, 20 августа вышел к юго-восточному побережью п-ова Камчатка глубиной 988 гПа. Над северной половиной района отмечались усиление ветра до 18–23 м/с, волнение моря 3–4 м, дожди.

В течение декады на большей части акватории наблюдались туманы, видимость в тумане ухудшалась до  $500-1000 \, \mathrm{m}$ .

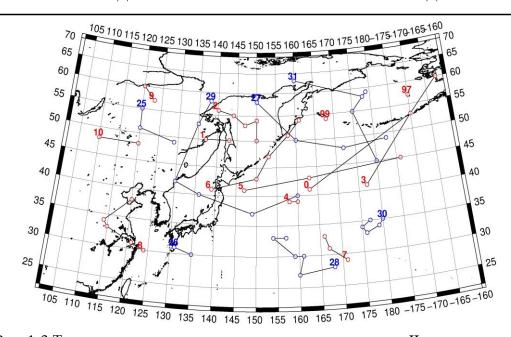



Рис. 1-3 Траектории движения циклонов и антициклонов во II декаде августа

|       |            | Циклоны |         |          |       |            |        | ны      |          |
|-------|------------|---------|---------|----------|-------|------------|--------|---------|----------|
| Номер | Дата       | Широта  | Долгота | Давление | Номер | Дата       | Широта | Долгота | Давление |
| 97    | 11.08.2018 | 57      | 190     | 1002     | 25    | 11.08.2018 | 55     | 120     | 1012     |
| 99    | 11.08.2018 | 54      | 168     | 1010     |       | 12.08.2018 | 51     | 120     | 1012     |
| 00    | 11.08.2018 | 41      | 163     | 996      |       | 13.08.2018 | 49     | 129     | 1010     |
|       | 12.08.2018 | 53      | 190     | 988      | 26    | 11.08.2018 | 31     | 131     | 1008     |
|       | 13.08.2018 | 60      | 198     | 982      |       | 12.08.2018 | 30     | 135     | 1012     |
| 01    | 11.08.2018 | 50      | 137     | 1004     | 27    | 11.08.2018 | 58     | 150     | 1014     |
|       | 12.08.2018 | 50      | 143     | 1006     |       | 12.08.2018 | 50     | 160     | 1016     |
| 02    | 12.08.2018 | 56      | 140     | 1006     |       | 13.08.2018 | 48     | 172     | 1022     |
|       | 13.08.2018 | 55      | 144     | 1006     |       | 14.08.2018 | 49     | 183     | 1032     |
|       | 14.08.2018 | 53      | 147     | 1008     | 28    | 11.08.2018 | 28     | 168     | 1014     |
|       | 15.08.2018 | 54      | 150     | 1012     |       | 12.08.2018 | 27     | 160     | 1016     |
|       | 16.08.2018 | 50      | 150     | 1012     |       | 13.08.2018 | 30     | 161     | 1018     |
| 03    | 11.08.2018 | 41      | 177     | 1000     |       | 14.08.2018 | 30     | 159     | 1020     |
|       | 12.08.2018 | 53      | 190     | 988      |       | 15.08.2018 | 33     | 154     | 1020     |
| 04    | 12.08.2018 | 39      | 158     | 1008     |       | 16.08.2018 | 33     | 157     | 1018     |
|       | 13.08.2018 | 39      | 160     | 1014     | 29    | 15.08.2018 | 58     | 138     | 1020     |
| 05    | 15.08.2018 | 41      | 147     | 1012     |       | 16.08.2018 | 53     | 135     | 1022     |
|       | 16.08.2018 | 43      | 163     | 1008     |       | 17.08.2018 | 42     | 130     | 1018     |
|       | 17.08.2018 | 45      | 186     | 1002     |       | 18.08.2018 | 40     | 136     | 1014     |
| 06    | 16.08.2018 | 41      | 139     | 1002     |       | 19.08.2018 | 37     | 149     | 1018     |
|       | 17.08.2018 | 43      | 150     | 994      |       | 20.08.2018 | 40     | 160     | 1020     |
|       | 18.08.2018 | 47      | 153     | 996      | 30    | 16.08.2018 | 35     | 180     | 1022     |
|       | 19.08.2018 | 51      | 158     | 994      |       | 17.08.2018 | 34     | 179     | 1022     |
|       | 20.08.2018 | 54      | 161     | 988      |       | 18.08.2018 | 33     | 176     | 1026     |
| 07    | 15.08.2018 | 29      | 171     | 1012     |       | 19.08.2018 | 34     | 175     | 1024     |
|       | 16.08.2018 | 31      | 167     | 1014     |       | 20.08.2018 | 35     | 177     | 1024     |

|       |            | Циклоны | I       |          | Антициклоны |            |        |         |          |  |
|-------|------------|---------|---------|----------|-------------|------------|--------|---------|----------|--|
| Номер | Дата       | Широта  | Долгота | Давление | Номер       | Дата       | Широта | Долгота | Давление |  |
|       | 17.08.2018 | 33      | 166     | 1014     | 31          | 15.08.2018 | 63     | 160     | 1026     |  |
| 08    | 16.08.2018 | 30      | 124     | 1000     |             | 16.08.2018 | 58     | 178     | 1022     |  |
|       | 17.08.2018 | 31      | 121     | 985      |             | 17.08.2018 | 59     | 179     | 1018     |  |
|       | 18.08.2018 | 33      | 115     | 992      |             | 18.08.2018 | 55     | 175     | 1026     |  |
|       | 19.08.2018 | 34      | 114     | 996      |             | 19.08.2018 | 45     | 180     | 1024     |  |
|       | 20.08.2018 | 38      | 120     | 996      |             | 19.08.2018 | 34     | 175     | 1024     |  |
| 09    | 18.08.2018 | 57      | 123     | 1000     |             |            |        |         |          |  |
|       | 19.08.2018 | 60      | 120     | 1002     |             |            |        |         |          |  |
| 10    | 19.08.2018 | 48      | 110     | 1004     |             |            |        |         |          |  |
|       | 20.08.2018 | 48      | 120     | 1002     |             |            |        |         |          |  |

III декада августа 2018 г.

#### Японское море

21–22 августа северная половина моря находилась под воздействием южной периферии циклона с давлением в центре 998 гПа (бывшего тропического циклона RUMBIA), который перемещался с Китая через Приморский край на север Японского моря, далее через Татарский пролив вышел на Охотское море. Над северной половиной моря отмечались усиление южного ветра до 15–20 м/с, волнение 2–3 м, дожди.

23 августа над акваторией моря установилось поле повышенного давления с умеренным ветром 6-11 м/с и умеренным волнением 1-2 м.

В период 24-26 августа через Японское море прошли два тропических шторма.

Один из них STS CIMARON смещался с юга через о. Рюкю. Утром 24 августа он вышел на юго-восточную часть Японского моря глубиной 990 гПа, трансформировался в циклон умеренных широт; далее, заполняясь, смещался на северо-восток со скоростью 40-50 км/ч, 25 августа вышел на северо-западную часть Тихого океана, к юго-востоку от о. Хоккайдо с давлением в центре 1004 гПа.

Второй – STS SOULIK, 23 августа вышел к юго-восточной оконечности Корейского п-ова глубиной 975 гПа. Утром 24 августа STS SOULIK переместился на Японское море, к востоку от Корейского п-ова, заполнившись до 985 гПа. В течение суток STS SOULIK, заполняясь, со скоростью 30–40 км/ч перемещался на восток-северо-восток, приобрел черты циклона умеренных широт и 25 августа подошёл к юго-восточному побережью Приморского края с давлением в центре 996 гПа. В течение следующих суток циклон смещался на восток со скоростью 20–30 км/ч, 26 августа находился над юго-западной частью Охотского моря, заполнившись до 1004 гПа. При прохождении тропических штормов над Японским морем наблюдались ураганный ветер до 35 м/с, очень сильное волнение до 6 м, очень сильные дожди. Вдоль побережья Приморского края наблюдалось повышение уровня моря до критических значений.

27–29 августа над акваторией моря установилось поле повышенного давления. Наблюдался умеренный ветер и волнение: ветер в пределах 6–11 м/с, волнение – 1–2 м.

В период 30–31 августа через северную часть акватории проследовал неглубокий западный циклон с давлением в центре 1004 гПа, в зоне которого наблюдались свежий ветер 9–14 м/с, волнение моря 1,5–2,5 м, небольшие дожди.

## Охотское море

В начале декады, 21–22 августа погодные условия над акваторией моря определял гребень тихоокеанского антициклона. Наблюдались умеренный ветер 6–11 м/с и умеренное волнение моря 0,5–1,5 м. 23 августа через акваторию моря проследовал неглубокий циклон с давлением в центре 1002 гПа, он следовал с Приамурья.

С 23 по 31 августа через акваторию Охотского моря в Тихий океан проследовали три антициклона. Два из них смещались с Колымы: 23–25 августа с давлением в центре 1018 гПа, 30 августа с давлением в центре 1020 гПа. Ещё один антициклон образовался над Охотским морем 27 августа с давлением в центре 1016 гПа, усиливаясь, медленно смещался на юго-восток. 29-го числа с давлением в центре 1022 гПа он покинул акваторию моря.

В течение всей декады наблюдались туманы, видимость ухудшалась до 1000 м и менее.

## Берингово море

В течение декады погодные условия Берингова моря формировались под воздействием трех циклонов.

21 августа на западную часть моря вышел циклон с давлением в центре 986 гПа. Циклон образовался 16 августа над Японским морем на волне атмосферного фронта. Углубляясь, он со скоростью 30–40 км/ч смещался на северо-восток, 21 августа вышел на Берингово море глубиной 986 гПа, замедлил движение и начал заполняться. В дальнейшем в течение трех суток циклон, заполняясь, со скоростью 10–20 км/ч перемещался на восток. 24 августа он заполнился над восточной частью Берингова моря. Циклон обусловил усиление ветра до 15–20 м/с, волнение моря 2–3 м, дожди.

25 августа к центральным островам Алеутской гряды подошел циклон с давлением в центре 994 гПа. Он быстро (со скоростью 70 км/ч) проследовал через акваторию моря на север, 26 августа вышел на Чукотку, заполнившись до 998 гПа. Циклон вызвал усиление ветра до 15–20 м/с, волнение моря 2–3 м, дожди.

27–28 августа на акваторию моря распространился гребень от тихоокеанского антициклона. Ветер и волнение моря были умеренные.

29 августа к Алеутским островам с Тихого океана приблизился циклон с давлением в центре 994 гПа, бывший тайфун SOULIK. В течение суток он, углубляясь, со скоростью 40 км/ч перемещался на север-северо-восток, 30 августа находился над центральной частью Берингова моря глубиной 988 гПа. В течение следующих суток смещался на северо-восток и заполнялся. 31 августа циклон располагался над северо-восточной частью моря с давлением в центре 1000 гПа. Циклон вызвал усиление ветра до 18–23 м/с, волнение моря развивалось до 5 м, отмечались сильные дожди.

Над западной половиной моря в течение всей декады наблюдались туманы, видимость ухудшалась до 500-1000 м.

## Северо-западная часть Тихого океана

В начале декады, 21-22 августа, акватория северо-западной части Тихого океана находилась под воздействием гребня тихоокеанского антициклона, давление в центре которого составляло 1028 гПа. Над акваторией наблюдались умеренный ветер 6-11 м/с и умеренное волнение 0.5-1.5 м, туман ухудшал видимость до 1000м и менее.

23 августа у точки окклюзии охотоморского циклона южнее Курильских островов образовался циклон с давлением в центре 1004 гПа. В течение двух суток циклон, углубляясь, со скоростью 30 км/ч перемещался на восток-северо-восток, 25 августа приблизился к Алеутским островам, давление в его центре составляло 994 гПа. На севере района отмечались усиление ветра до 15–20 м/с, волнение 2–3 м, небольшие дожди.

25 августа в северо-западную часть Тихого океана, к юго-востоку от о. Хоккайдо, с акватории Японского моря вышел циклон с давлением в центре 1004 гПа, бывший тропический шторм CIMARON. В течение двух суток циклон, углубляясь, со скоростью 30–40 км/ч перемещался на восток, 27 августа находился над восточной частью района глубиной 998 гПа, где в течение суток заполнился.

27 августа в северо-западную часть Тихого океана с акватории Японского моря вышел еще один циклон с давлением в центре 1002, бывший тайфун SOULIK. В течение двух суток он, углубляясь, со скоростью 40 км/ч перемещался на восток, затем на северо-восток и 29 августа подошёл к Алеутским островам глубиной 994 гПа. 30 августа циклон переместился на Берингово море. При смещении циклонов тропического происхождения над северо-западной частью Тихого океана наблюдались сильный ветер 18–23 м/с и сильное волнение 4–5 м, шли дожди.

29 августа на акваторию океана с Охотского моря переместился антициклон с давлением в центре 1022 гПа. В течение двух суток антициклон усиливался и медленно смещался на восток, 31 августа находился на севере района с давлением в центре 1026 гПа.

В этот же период (29 августа) восточнее о. Хонсю отмечалась циклоническая деятельность. С Японского моря перевалил неглубокий циклон с давлением в центре 1010 гПа. В течение двух суток он без развития со скоростью 10–20 км/ч смещался на восток, 31 августа вышел на центральную часть района. При прохождении циклона наблюдались свежий ветре 9–14 м/с, волнение 2–3 м, небольшие дожди.

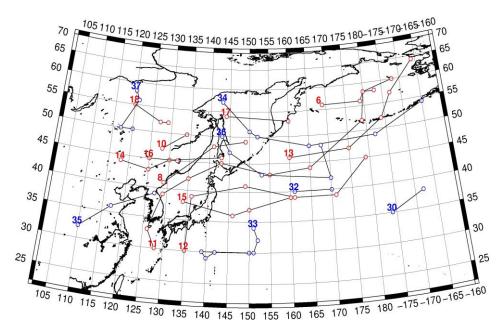



Рис. 1-4 Траектории движения циклонов и антициклонов в III декаде августа

| Циклоны |            |        |         |          | Антициклоны             |            |    |         |          |  |
|---------|------------|--------|---------|----------|-------------------------|------------|----|---------|----------|--|
| Номер   | Дата       | Широта | Долгота | Давление | Номер Дата Широта Долго |            |    | Долгота | Давление |  |
| 06      | 21.08.2018 | 56     | 169     | 986      | 30                      | 21.08.2018 | 35 | 184     | 1024     |  |
|         | 22.08.2018 | 56     | 179     | 990      |                         | 22.08.2018 | 38 | 192     | 1028     |  |
|         | 23.08.2018 | 58     | 180     | 994      | 32                      | 22.08.2018 | 40 | 161     | 1020     |  |
|         | 24.08.2018 | 58     | 183     | 1000     |                         | 23.08.2018 | 40 | 170     | 1018     |  |
| 08      | 21.08.2018 | 41     | 129     | 998      | 33                      | 23.08.2018 | 34 | 151     | 1020     |  |
|         | 22.08.2018 | 48     | 141     | 998      |                         | 24.08.2018 | 32 | 152     | 1020     |  |
|         | 23.08.2018 | 49     | 149     | 1002     |                         | 25.08.2018 | 30 | 151     | 1016     |  |

|       | •          | Циклоны | I       |          |       | A          | <b>Антицикло</b> | ны      |          |
|-------|------------|---------|---------|----------|-------|------------|------------------|---------|----------|
| Номер | Дата       | Широта  | Долгота | Давление | Номер | Дата       | Широта           | Долгота | Давление |
| 10    | 21.08.2018 | 47      | 128     | 998      |       | 26.08.2018 | 30               | 139     | 1016     |
|       | 22.08.2018 | 50      | 134     | 996      |       | 27.08.2018 | 29               | 140     | 1016     |
| 11    | 22.08.2018 | 30      | 128     | 950      |       | 28.08.2018 | 29               | 140     | 1016     |
|       | 23.08.2018 | 33      | 126     | 975      |       | 29.08.2018 | 30               | 142     | 1016     |
|       | 24.08.2018 | 39      | 129     | 985      |       | 30.08.2018 | 30               | 142     | 1016     |
|       | 25.08.2018 | 42      | 135     | 996      |       | 31.08.2018 | 30               | 150     | 1018     |
|       | 26.08.2018 | 45      | 143     | 1004     | 34    | 23.08.2018 | 57               | 143     | 1012     |
|       | 27.08.2018 | 43      | 155     | 1002     |       | 24.08.2018 | 51               | 150     | 1018     |
|       | 28.08.2018 | 44      | 165     | 992      |       | 25.08.2018 | 50               | 152     | 1018     |
|       | 29.08.2018 | 52      | 179     | 994      |       | 26.08.2018 | 48               | 165     | 1016     |
|       | 30.08.2018 | 58      | 180     | 988      |       | 27.08.2018 | 49               | 182     | 1018     |
|       | 31.08.2018 | 60      | 188     | 1000     |       | 28.08.2018 | 54               | 195     | 1024     |
| 12    | 23.08.2018 | 30      | 135     | 955      | 35    | 24.08.2018 | 32               | 110     | 1008     |
|       | 24.08.2018 | 39      | 136     | 990      |       | 25.08.2018 | 36               | 117     | 1010     |
|       | 25.08.2018 | 41      | 149     | 1004     |       | 26.08.2018 | 39               | 127     | 1014     |
|       | 26.08.2018 | 39      | 161     | 996      | 36    | 27.08.2018 | 50               | 143     | 1016     |
|       | 27.08.2018 | 39      | 171     | 998      |       | 28.08.2018 | 47               | 145     | 1020     |
|       | 28.08.2018 | 45      | 179     | 1000     |       | 29.08.2018 | 43               | 153     | 1022     |
| 13    | 23.08.2018 | 46      | 160     | 1004     |       | 30.08.2018 | 42               | 170     | 1026     |
|       | 24.08.2018 | 47      | 175     | 998      |       | 31.08.2018 | 48               | 168     | 1026     |
|       | 25.08.2018 | 52      | 184     | 994      | 37    | 28.08.2018 | 58               | 120     | 1020     |
|       | 26.08.2018 | 57      | 187     | 994      |       | 29.08.2018 | 56               | 121     | 1020     |
|       | 27.08.2018 | 64      | 194     | 998      |       | 30.08.2018 | 50               | 117     | 1018     |
| 14    | 28.08.2018 | 44      | 118     | 1008     |       | 31.08.2018 | 50               | 120     | 1018     |
|       | 29.08.2018 | 43      | 125     | 1006     |       |            |                  |         |          |
|       | 30.08.2018 | 45      | 130     | 1004     |       |            |                  |         |          |
|       | 31.08.2018 | 46      | 143     | 1004     |       |            |                  |         |          |
| 15    | 28.08.2018 | 38      | 134     | 1010     |       |            |                  |         |          |
|       | 29.08.2018 | 36      | 146     | 1010     |       |            |                  |         |          |
|       | 30.08.2018 | 37      | 150     | 1012     |       |            |                  |         |          |
|       | 31.08.2018 | 39      | 160     | 1010     |       |            |                  |         |          |
| 16    | 25.08.2018 | 45      | 125     | 1002     |       |            |                  |         |          |
|       | 26.08.2018 | 45      | 132     | 1006     |       |            |                  |         |          |
| 17    | 26.08.2018 | 54      | 144     | 1008     |       |            |                  |         |          |
|       | 27.08.2018 | 53      | 160     | 1008     |       |            |                  |         |          |
|       | 28.08.2018 | 53      | 160     | 1008     |       |            |                  |         |          |
| 18    | 26.08.2018 | 55      | 120     | 1008     |       |            |                  |         |          |
|       | 27.08.2018 | 52      | 127     | 1010     |       |            |                  |         |          |
|       | 28.08.2018 | 52      | 129     | 1012     |       |            |                  |         |          |

#### 1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных анализа NCEP/NCAR и приведены ниже (рис. 1-5–1-7). Анализ термобарических полей сделан на базе средних за месяц карт геопотенциала на стандартном изобарическом уровне 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981–2010 гг.

#### Японское море

Тотальная аномалия тепла над регионом, сложившаяся в средней тропосфере в июле, в августе была нарушена очагом холода и соответствующей ей ложбиной над Камчаткой, Охотским морем и прилегающими акваториями Тихого океана. Над большей частью Азии, кроме бассейна Енисея и крайнего юго-востока, в тропосфере сохранялись положительные аномалии геопотенциала (повышенный запас тепла). Над Восточной Азией аномалии геопотенциальных высот поля  $H_{500}$  достигали 4-5 дам, над арктическим побережьем — до +10 дам. Следует отметить высокую напряженность высотной фронтальной зоны над умеренными широтами Тихого океана, что во многом определялось необычайным развитием субтропического максимума, аномалии геопотенциальных высот в зоне которого достигали +2-+5 дам. Акватория Японского моря в средней тропосфере находилась в зоне западно-восточного переноса воздуха со слабым наклоном от северо-запада над северной частью акватории. Северные, северо-восточные районы моря кроме этого испытывали влияние тыловой части высотной ложбины, здесь аномалии геопотенциальных высот поля  $H_{500}$  отрицательные до -4 дам. Юго-западная часть акватории — в области положительных аномалий от 1 до 3 дам.

У земной поверхности барическое поле над регионом имело ряд значительных отклонений от среднего многолетнего, при этом, безусловно, носило летний характер распределения. Азиатская депрессия – в активной позиции, ещё более активный циклогенез в течение месяца наблюдался над тропической частью океана вблизи юго-восточного побережья Азии. Аномалии атмосферного давления над этими районами отрицательные до -3 гПа. Совершенно деградирована депрессия над средним и нижним Амуром, атмосферное давление над этими районами выше обычного на 2 гПа. Колыма занята устойчивым антициклоном (аномалии атмосферного давления здесь положительные до 2-4 гПа). Именно отрог от колымского антициклона часто вторгался на территорию Хабаровского края и север Приморья, обусловив в среднем за месяц здесь (над средним и нижним Амуром) фон повышенного давления. Большая часть акватории Тихого океана оставалась под воздействием антициклона, мощность которого превышала норму примерно на 2 гПа. Влияние антициклона не распространялось лишь на юго-западные районы океана, где отмечался активный тропический циклогенез, и крайние западные, северо-западные районы, над которыми тропические циклоны проложили свои траектории в умеренные широты. Над Японским морем у поверхности земли барическое поле в среднем за месяц малоградиентное неопределенного знака; фон давления для большей части акватории, кроме крайнего севера, ниже нормы примерно на 1 гПа.

Температура воздуха на уровне  $H_{850}$  (нижняя тропосфера) над акваторией Японского моря распределена от +19 °C на юге до +9 °C на севере моря. Над южной половиной моря за месяц она не изменилась, над северной понизилась на 2–3 °C. Это состояние незначительно превышает норму (примерно на 1 °C) на юго-западе акватории, и ниже нормы на 1–2 °C для северной половины.

#### Охотское море

В августе в средней тропосфере над Охотским морем располагалась обширная ложбина. Аномалии геопотенциальных высот над большей частью акватории сложились отрицательные до -6 дам с наибольшими отклонениями от нормы над северными Курилами.

Поле атмосферного давления над морем у земной поверхности в среднем за месяц малоградиентное повышенное над северными районами (с превышением норма на 1-2 г $\Pi$ a) и пониженное на юге (ниже нормы примерно на 1 г $\Pi$ a).

Температура воздуха в нижнем слое тропосферы на уровне  $H_{850}$  над морем в среднем за месяц распределена от 12 °C на юге до 5 °C на северо-востоке акватории. За месяц она понизилась на 2–5 °C. Для большей части акватории это состояние ниже нормы на 1–2 °C.

#### Берингово море

В августе над Беринговым морем в средней тропосфере располагалась барическая ложбина, что определяло пониженный фон давления и тепла. Аномалии геопотенциальных высот поля  $H_{500}$  над большей частью акватории отрицательные в пределах -1— -4 дам, лишь на юго-востоке моря они положительные до +2 дам.

У земной поверхности акватория моря находилась в зоне пониженного барического рельефа между двумя антициклонами, тихоокеанским и колымским. Фон атмосферного давления для большей части акватории близок к норме, аномалии в пределах  $\pm 1$  гПа, лишь на северовостоке вблизи Аляски давление ниже среднего многолетнего на 1-2 гПа.

Температура воздуха на уровне  $H_{850}$  над морем в среднем за месяц распределена от 8 °C на юге, юго-востоке до 3 °C на севере моря. За месяц она понизилась на 1–3 °C. Это состояние незначительно ниже нормы для большей части акватории (примерно на 1°C), лишь для юго-востока выше обычного тоже на 1 °C.

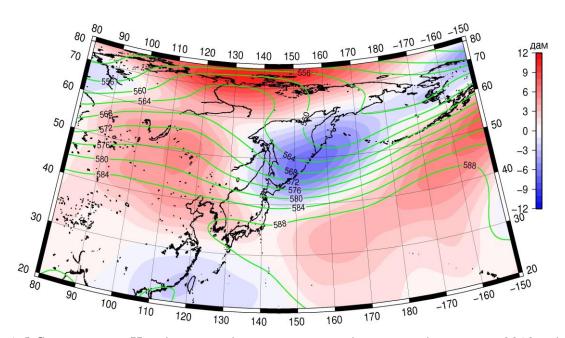



Рис. 1-5 Среднее поле  $H_{500}$  (изогипсы) и его аномалия (изополосы) в августе 2018 г. (дам)

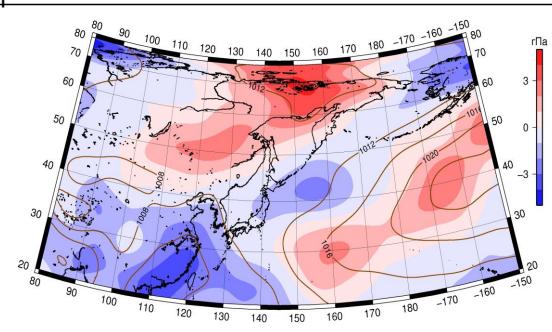



Рис. 1-6 Среднее поле давления у поверхности земли (изобары) и его аномалия (изополосы) в августе 2018 г. (гПа)

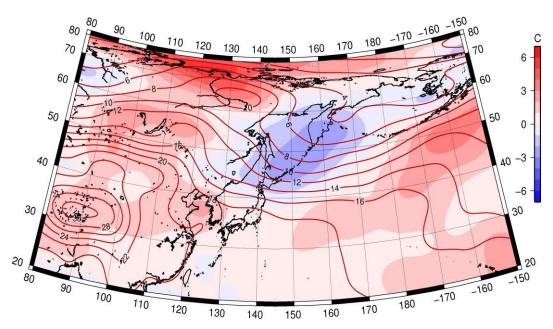



Рис. 1-7 Среднее поле  $T_{850}$  (изотермы) и его аномалия (изополосы) в августе 2018 г. (°С)

## 1.3 Глобальные и региональные индексы циркуляции атмосферы

## 1.3.1 Зональный и меридиональный перенос воздуха над II е.с.р.

Характеристика основных воздушных течений в средней и нижней тропосфере в августе 2018 г. сделана на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-8–1-10. В данном разделе принята следующая терминология для характеристики индексов: норма  $-\pm 0,3$ STD относительно нормы; незначительное отклонение от нормы  $-\pm (0,4-0,7)$ STD; значительное отклонение от нормы  $-\ge 2$ STD относительно нормы. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период 1981-2010 гг.

#### Японское море

В августе интенсивность западно-восточного переноса воздуха в тропосфере над Японским морем незначительно превышала норму в среднем слое и была слабее обычного у поверхности земли (Kz составляет 0,4STD и -1,1STD в среднем слое и у поверхности земли, соответственно). В средней тропосфере господствовал западно-восточный перенос (значение индекса Kz положительное), в нижнем слое преобладал перенос с востока на запад (значение индекса Kz отрицательное). В зоне умеренных широт над II е. с. р. интенсивность зональных течений в средней тропосфере незначительно превышала норму, у поверхности земли была незначительно слабее обычного (Kz соответственно составляет 0,4STD и -0,5STD). Во всем слое господствовал перенос воздуха с запада на восток (значения индексов Kz положительные).

Межширотный обмен в средней тропосфере над Японским морем незначительно превышал норму (|Km| составляет 0,4STD); многолетний баланс между меридиональными компонентами значительно нарушен в пользу северной компоненты переноса (Кт составляет -2,4STD). У поверхности земли межширотный обмен был слабее обычного (|Km| составляет -1,0STD), что определялось ослаблением южной составляющей (Кт составляет -0,8STD). Воздушные течения с севера оставались преобладающими в среднем слое тропосферы (значение индекса отрицательное), у земли сохранялось преобладание переноса воздуха с юга (значение индекса положительное).

Над умеренной зоной II е. с. р. в целом за месяц интенсивность межширотного обмена в тропосфере была близка к норме (|Km| составляет 0,1STD и -0,2STD, соответственно для среднего и нижнего слоев); многолетний баланс между меридиональными компонентами был незначительно нарушен в пользу южной компоненты переноса (Кт составляет соответственно 0,7STD и 0,8STD). Во всем слое тропосферы преобладал перенос воздуха с юга (значения индексов положительные).

#### Охотское море

Перенос воздуха с запада на восток в средней тропосфере над Охотским морем оставался господствующим (значение зонального индекса положительное), его интенсивность — ниже нормы (Kz составляет -1,0STD); у поверхности земли с превышением нормы преобладал перенос с востока на запад (Kz составляет -1,8STD, значение индекса отрицательное). В зоне 50–70° с. ш. над II е. с. р. во всем слое тропосферы преобладал перенос воздуха с запада на восток (значения индексов положительные), его интенсивность была ниже средней многолетней в среднем слое (Kz составляет -1,0STD) и близка к норме у поверхности земли (Kz составляет 0,0STD).

Межширотный обмен над акваторией Охотского моря в среднем слое тропосферы был интенсивнее обычного (|Km| составляет 0,9STD), что определялось усилением северной компоненты переноса (Кm составляет -0,8STD). У поверхности земли межширотный обмен также был слабым (|Km| составляет -1,1STD), что в большей мере определялось ослаблением южной составляющей переноса (Кm составляет -0,5STD). В средней тропосфере в течение месяца преобладал перенос воздуха с севера на юг (значение индекса отрицательное), в нижнем слое – с юга на север (значение индекса положительное).

В зоне 50–70° с. ш. над II е. с. р. межширотный обмен в среднем слое тропосферы превышал норму (|Km| составляет 1,5STD), в нижнем слое был незначительно слабее обычного (|Km| составляет -0,6STD). Многолетний баланс между меридиональными компонентами при этом оставался в пределах нормы (Кт составляет -0,3STD и -0,1STD в среднем и нижнем слоях, соответственно). В средней тропосфере в течение месяца незначительно преобладал перенос воздуха с севера (значение индекса отрицательное), в нижнем слое – с юга на север (значение индекса положительное).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

| 11        | Уровень   |          | Июнь   |       |          | Июль   |       |          | Август |       |
|-----------|-----------|----------|--------|-------|----------|--------|-------|----------|--------|-------|
| Индекс*   | (высота)  | значение | ASTD** | STD** | значение | ASTD** | STD** | значение | ASTD** | STD** |
| Кz Ям     |           | 11836    | 0.8    | 2632  | 9325     | -0.1   | 2519  | 12762    | 0.4    | 2964  |
| Кz Ом     |           | 5957     | 0.4    | 2529  | 5737     | -0.1   | 2365  | 7227     | -1.0   | 2570  |
| Кz Бм     |           | 2892     | -0.4   | 3172  | 7356     | 0.4    | 2603  | 11031    | 0.4    | 3235  |
| Kz 35_50  |           | 13778    | 0.7    | 1068  | 9408     | -0.8   | 1303  | 11589    | 0.4    | 1644  |
| Kz 50_70  |           | 2138     | -2.6   | 1103  | 6882     | 1.3    | 1452  | 5185     | -1.0   | 1560  |
| Kz 35_70  |           | 7189     | -2.6   | 537   | 7807     | 0.8    | 702   | 7749     | -0.7   | 829   |
| Кт Ям     |           | -270     | 0.0    | 1370  | -811     | -1.1   | 1051  | -1927    | -2.4   | 1319  |
| Кт Ом     |           | -1411    | 0.2    | 1387  | -650     | 0.5    | 1246  | -2168    | -0.8   | 1483  |
| Кт Бм     | 500 pHa   | -794     | -0.1   | 1155  | -230     | -0.1   | 726   | 1765     | 1.1    | 1165  |
| Km 35_50  | 500 гПа   | -877     | -1.3   | 379   | 507      | 1.6    | 169   | 437      | 0.7    | 366   |
| Km 50_70  |           | -1257    | -2.3   | 356   | 108      | 1.6    | 232   | -259     | -0.3   | 392   |
| Km 35_70  |           | -1040    | -2.3   | 299   | 284      | 1.8    | 173   | 38       | 0.1    | 287   |
| Кт  Ям    |           | 1096     | -0.9   | 1017  | 2085     | 0.3    | 838   | 2823     | 0.4    | 1228  |
| Кт  Ом    |           | 2373     | -0.7   | 1698  | 2195     | -0.6   | 1384  | 4048     | 0.9    | 1075  |
| Кт  Бм    |           | 2367     | -0.8   | 1368  | 2553     | -0.4   | 1193  | 3704     | 0.3    | 984   |
| Km  35_50 |           | 2241     | -1.1   | 486   | 2046     | -0.3   | 645   | 2479     | 0.1    | 565   |
| Km  50_70 |           | 2841     | -0.6   | 764   | 1781     | -1.5   | 596   | 3652     | 1.5    | 629   |
| Km  35_70 |           | 2553     | -0.9   | 568   | 1889     | -1.1   | 539   | 3080     | 1.1    | 459   |
| Кz Ям     |           | 3125     | 1.3    | 1091  | 1765     | 0.0    | 1195  | -587     | -1.1   | 1376  |
| Кz Ом     |           | -401     | -1.8   | 838   | 1242     | 0.0    | 1210  | -406     | -1.8   | 1049  |
| Кz Бм     |           | -267     | -0.8   | 1345  | 2037     | 0.2    | 1330  | 2947     | 0.1    | 1659  |
| Kz 35_50  |           | 2093     | 0.3    | 926   | 2181     | 0.3    | 772   | 1035     | -0.5   | 885   |
| Kz 50_70  |           | -1229    | -1.5   | 649   | 391      | 1.0    | 613   | 185      | 0.0    | 806   |
| Kz 35_70  |           | 288      | -0.8   | 512   | 1164     | 0.9    | 480   | 514      | -0.3   | 532   |
| Кт Ям     |           | 2080     | 0.2    | 612   | 1889     | -0.5   | 548   | 603      | -0.8   | 603   |
| Кт Ом     |           | 1013     | 0.3    | 535   | 1074     | -0.1   | 487   | 224      | -0.5   | 650   |
| Кт Бм     | 1000 гПа  | -337     | -0.7   | 702   | 972      | 0.6    | 297   | 634      | -0.1   | 640   |
| Km 35_50  | 1000 111a | 622      | -0.9   | 265   | 1613     | 2.0    | 178   | 1162     | 0.8    | 257   |
| Km 50_70  |           | 61       | -0.6   | 182   | 395      | 0.0    | 123   | 151      | -0.1   | 205   |
| Km 35_70  | 1         | 330      | -0.8   | 185   | 933      | 1.2    | 120   | 601      | 0.5    | 182   |
| Кт  Ям    |           | 2895     | 0.2    | 775   | 2695     | -0.4   | 729   | 913      | -1.0   | 707   |
| Кт  Ом    |           | 2031     | 0.0    | 608   | 1741     | -0.8   | 576   | 1030     | -1.1   | 616   |
| Кт  Бм    |           | 1372     | -0.5   | 844   | 1859     | 0.1    | 518   | 1656     | -0.5   | 725   |
| Km  35_50 |           | 2086     | -0.9   | 359   | 2772     | 0.2    | 254   | 2128     | -0.2   | 348   |
| Km  50_70 | ]         | 1882     | 0.4    | 234   | 1897     | 0.7    | 233   | 1274     | -0.6   | 303   |
| Km  35_70 |           | 1937     | -0.5   | 214   | 2295     | 8.0    | 176   | 1666     | -0.5   | 244   |

<sup>\*</sup> Описание индексов приведено в разделе «Терминология».

<sup>\*\*</sup> Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1971–2000 гг.

## Берингово море

В течение месяца западно-восточный перенос воздуха в тропосфере над Беринговым морем был господствующим (значения индексов положительные), его интенсивность незначительно превышала норму в среднем слое (Kz составляет 0,4STD) и была близка к ней у поверхности земли (Kz составляет 0,1STD).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря была близка к норме (|Km| составляет 0,3STD), но многолетний баланс между меридиональными составляющими нарушен в пользу южной компоненты переноса (Кm составляет 1,1STD). У поверхности земли межширотный обмен был незначительно слабее обычного (|Km| составляет -0,5STD), при этом многолетний баланс между меридиональными составляющими оставался близким к среднему многолетнему (Кm составляет -0,1STD). Во всем слое тропосферы преобладал перенос воздуха с юга на север (значения индексов положительные).



Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Kz) в нижней тропосфере над дальневосточными морями

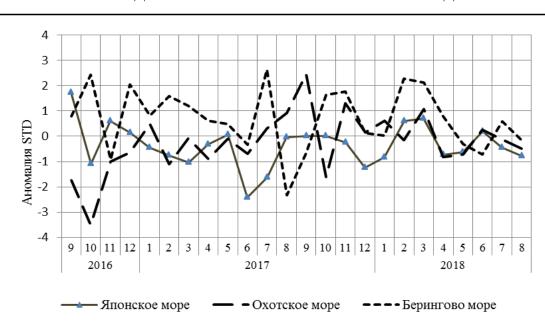



Рис. 1-9 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями



Рис. 1-10 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.3.1 Индекс засушливости Педя S для станций Приморского и Хабаровского краёв 1

| Приморский край      | Март | Апрель | Май  | Июнь | Июль | Август |
|----------------------|------|--------|------|------|------|--------|
| Анучино              | -0.1 | 2.0    | -1.4 | 1.1  | 2.1  | -3.3   |
| Астраханка           | -1.3 | -0.3   | 1.1  | 0.4  | 1.0  | -3.3   |
| Владивосток          |      | 1.0    |      |      |      |        |
| Дальнереченск        | -1.8 | 1.1    | -0.2 | 1.4  | 0.8  | -1.2   |
| Охотничий            | -0.4 | 1.2    | 1.0  | 1.2  | 1.5  | -0.1   |
| Пограничный          | -1.5 | 0.5    | 1.1  | 0.4  | 1.8  | -5.4   |
| Посьет               | -1.9 | 1.7    | 0.1  | 1.9  | 1.5  | -0.6   |
| Преображение         | 1.6  | 1.7    | 1.1  | 1.8  | 0.4  | -2.8   |
| Рощино               | -0.4 | 0.8    | 2.0  | 0.2  | 0.9  | 0.5    |
| Рудная Пристань      | 0.2  | 1.1    | 0.4  | 0.6  | 0.9  | -0.6   |
| Сосуново             | 0.7  | 0.5    | -0.9 | -0.1 | 0.7  | 1.5    |
| Терней               | 0.9  | 1.4    | 1.1  | 1.0  | 0.5  | 1.4    |
| Тимирязевский        | -1.4 | 1.6    | -1.0 | 0.3  | 0.0  | -3.2   |
| Турий Рог            |      | 1.3    | 0.8  |      | 1.2  | -3.9   |
| Хабаровский край     | Март | Апрель | Май  | Июнь | Июль | Август |
| Аян                  | 0.3  | -0.1   | 3.9  | -1.2 | 1.3  | 1.6    |
| Гвасюги              | -0.3 | 1.4    | 0.8  | -0.9 | 0.1  | 0.8    |
| Екатерино-Никольское | -0.9 | 0.7    | 2.2  | 0.1  | -0.7 | 1.4    |
| Им. Полины Осипенко  | 0.2  | 2.2    | 3.5  | -3.0 | -0.7 | 0.9    |
| Комсомольск-на-Амуре | -1.5 | 1.8    | 2.1  | -2.8 | 0.4  | 1.6    |
| Нелькан              | -0.7 | -3.3   | 2.3  | -1.8 | 2.3  | 0.6    |
| Николаевск-на-Амуре  | 0.3  | -0.6   | 3.6  | -1.7 | -0.8 | -0.4   |
| Охотск               | -0.2 | 0.3    | 1.8  | -0.1 | 1.8  | 1.1    |
| Сковородино          | 0.4  | 2.0    | 1.9  | -1.9 | -0.3 | 1.6    |
| Софийский Прииск     | -5.1 | 0.7    | 3.2  | -1.6 | 0.6  | 1.2    |
| Сутур                | -0.4 | 2.6    | 2.2  | -1.4 | -0.7 | 1.3    |
| Тумнин               | -1.1 | 2.4    | 1.5  | -1.2 | 0.4  | 0.5    |
| Урми                 | 0.7  | 2.5    |      | -3.1 | 1.3  | 1.2    |
| Усть-Нюкжа           | -3.8 | 0.6    | 2.7  | -0.5 | -0.3 | 1.5    |
| Хабаровск_           | 0.2  | 1.9    | 2.5  | -3.9 | -0.1 | 1.2    |
| Хуларин              | -0.7 | 2.4    | 2.0  | -1.0 | 0.3  | 1.2    |
| Чекунда              | -3.0 | 2.9    | 2.6  | -2.6 | -0.6 | 2.5    |
| Чумикан              | 1.2  | 0.4    | 5.7  | -1.4 | 0.9  | 2.2    |

Положительные значения индекса соответствуют засушливым условиям, отрицательные – условиям достаточного (избыточного) увлажнения при пониженном фоне температур. Для месячных значений S принято считать, что

- если 1<S<2, то засуха слабая, если -1>S>-2, то увлажнение слабое;
- если 2<S<3, то засуха умеренная, если -2>S>-3, то увлажнение умеренное;
- если S>3, то засуха сильная, если S<-3, то увлажнение сильное.

-

<sup>&</sup>lt;sup>1</sup> См. раздел «Терминология бюллетеня».

## 1.4 Аналог погоды на август 2018 г. для Дальнего Востока

Аналог подбирается для усредненных за месяц полей давления воздуха у земли и геопотенциала  $H_{500}$  для II е. с. р. Объективным критерием подбора является коэффициент корреляции. Учитывается динамика процесса: используются поля за предшествующие месяцы с весовыми коэффициентами.

Дата аналога для августа 2018 г. – август 2013 г.

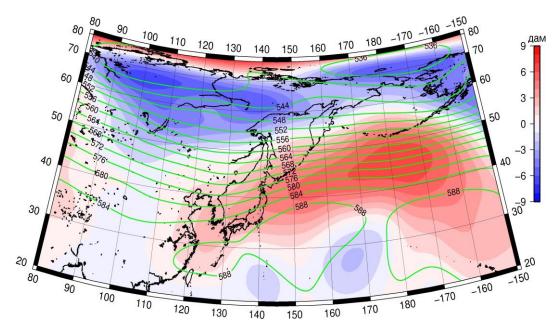



Рис. 1-11 Среднее поле  $H_{500}$  (изолинии) и его аномалия (изополосы) в сентябре 2013 г. (дам)

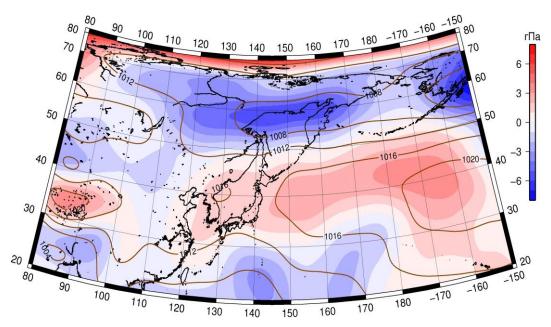



Рис. 1-12 Среднее поле давления у поверхности земли (изолинии) и его аномалия (изополосы) в сентябре 2013 г. (гПа)

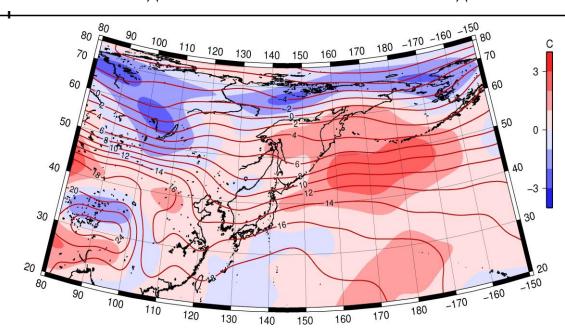



Рис. 1-13 Среднее поле  $T_{850}$  (изолинии) и его аномалия (изополосы) в сентябре 2013 г. (°С)