Министерство природных ресурсов и экологии Российской Федерации Федеральная служба по гидрометеорологии и мониторингу окружающей среды ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ДАЛЬНЕВОСТОЧНЫЙ РЕГИОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ ИНСТИТУТ» (ФГБУ «ДВНИГМИ»)

УДК 574.2 Рег. № НИОКТР 122041300033-7 Рег. № ИКРБС Инв. №

> ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ТВЕРЖЛАЮ

ректор ФГБУ «ДВНИГМИ»

Е.А. Горшков

РАЗВИТИЕ МОДЕЛЕЙ, МЕТОДОВ И ТЕХНОЛОГИЙ МОНИТОРИНГА ГИДРОХИМИЧЕСКОГО СОСТОЯНИЯ И ЗАГРЯЗНЕНИЯ МОРЕЙ РОССИИ И ОЦЕНКИ ГИДРОЛОГИЧЕСКОГО И ГИДРОХИМИЧЕСКОГО СОСТОЯНИЯ МОРЕЙ И МОРСКИХ УСТЬЕВ РЕК (заключительный) 4.6

Зам. директора по научной работе

О.В. Соколов

Руководитель НИР вед. научн. сотр. отдела региональной океанографии и гидрометеорологии доктор биол. наук:

А.В. Мощенко

Владивосток 2024

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель НИР, вед. науч. сотр., д-р биол. наук

А. В. Мощенко

Т. А. Белан

списка видов)

(Введение, заключение, реферат. Отв. исполнитель разделов 1 и 2: постановка задач, определение порядка выполнения работ, статистическая обработка и моделирование, текст разделов 1 и 2)

полпись, дат

23.12.2024

Исполнители: Вед. науч. сотр., канд. биол. наук

Научный сотр.

Гл. специалист,

г. Москва

000 «БМНЭИ»,

Decel 23.12.2024

подпись, дата

23,12,2024

подпись, дата

Б. М. Борисов (Раздел 2.2: обработка проб и таксономическое определение донных животных, составление списка видов)

(Раздел 2.2: обработка проб и таксономическое определение

донных животных, составление

С. Н. Артемьев

А.В.Шешегов

(Разделы 2.2, 2.4.2: обработка проб и таксономическое определение донных животных, составление списка видов, статистическая обработка, текст раздела 2.4.2)

23.12.2024 подпись. дата

Начальник РЦОД ДВ

Kny

А. А. Круц (Отв. исполнитель раздела 3: все работы по разделу 3, текст раздела 3)

(Раздел 3.4: создание программного обеспечения, поддержка БД ОГСН)

Ведущий инженер

23./1.2024 подпись, дата

alus

23,12.2024

подпись, дата

Инженер 1 кат.

И. М. Захарова (Раздел 3.3: перенос данных с бумажных на технические носители)

1 Acircl 23, 12, 7024, подпись, дата

Гл. специалист

Г. Ю. Харитонова (Отв. исполнитель раздела 4: введение, заключение, текст разделов 23.12.2024, 4.1)

подпись. дата

Научный сотр.

Д. Р. Шпачук (Введение, заключение, текст

Шессир 4 - 23.12.20241. подпись, дата

Нормоконтроль

Р. В. Усольцева 23.12.20247

подпись, дата

ΡΕΦΕΡΑΤ

Отчет 211 с., 1 кн., 84 рис., 30 таб., 78 источн., 4 прил.: 23 таб., 7 рис. МОНИТОРИНГ, ЗАЛИВ ПЕТРА ВЕЛИКОГО, ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ, ДОННЫЕ ОТЛОЖЕНИЯ, ЗАГРЯЗНЕНИЕ, ЭВТРОФИКАЦИЯ, МАКРОЗООБЕНТОС, ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ФОНД ДАННЫХ, РЕГИОНАЛЬНЫЙ ЦЕНТР ОКЕАНОЛОГИЧЕСКИХ ДАННЫХ, УРОВЕНЬ МОРЯ, ГАРМОНИЧЕСКИЕ ПОСТОЯННЫЕ, ПРЕДВЫЧИСЛЕНИЕ, МОДЕЛИ, ЦИФРОВЫЕ ФИЛЬТРЫ

В процессе работы по темам 4.6.2 и 4.6.3 в 2024 г. систематизированы и реструктурированы данные по факторам среды (гранулометрический состав, содержание загрязнителей и C_{opr} в донных отложениях) и количественным характеристикам макрозообентоса. Составлен атлас изменений общего уровня химического загрязнения донных отложений (индекс TPF_{chem}) для прибрежной акватории Владивостока и залива Находка (станции ОГСН; соответственно 1982–2022 и 2010–2022 гг.). Разработаны рекомендации для применения методов установления ПДУ, пороговых величин ERL_q , ERM_q и ERD_q . Показано, что для анализа экологического состояния и степени повреждения донного населения необходимо и достаточно применение всего пяти интегральных характеристик – индексов TPF_{bio} , AMBI и *M*-AMBI, ПЭС и *W*-статистики. Разработаны схема и рекомендации для анализа экологического состояния морской среды, которые включают аут- и синэкологический подходы.

Приводятся результаты, полученные в РЦОД по дальневосточному региону в рамках выполнения технического задания по теме НИТР 4.6.4 в 2024 году. Это дополненная результатами 2022 г. региональная БД по ДВ морям (залив Петра Великого; гидрологогидрохимические данные, загрязнение морской среды и гидробиологические параметры), данные экспедиционных и мониторинговых исследований по программе ОГСН в зал. Петра Великого (2004 г.), переведенные с бумажных носителей в электронный формат, электронные массивы MS-Excel с историческими данными и результатами наблюдений за 2023 г., переданные в ФГБУ «ГОИН» для пополнения БД «Загрязнение морей».

Для шести пунктов (Владивосток, Находка, Посьет, Преображение, Рудная Пристань и мыс Сосунова) приведены гармонические постоянные прилива и средний уровень моря, полученные в 2023 г., которые сравниваются с их средними и экстремальными значениями за весь предшествующий период наблюдений (тема 4.6.14). Уточнены значения среднего уровня моря для основных и дополнительных пунктов по зарубежным водам Тихого океана. Для постов наблюдения за уровнем моря, расположенных на побережье Японского моря, рассчитаны годовые экстремальные величины суммарных уровней моря редкой повторяемости один раз в 5, 10, 25 и 50 лет.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	8
1 Результаты опытного использования методов оценки экологического состояния	
морской среды на основе анализа сообществ макрозообентоса и определения	
допустимого уровня химического загрязнения осадков	11
1.1 Современное состояние, актуальность, цель и задачи исследования	11
1.2 Материалы и методы исследований	15
1.2.1 Использованные данные, отбор и обработка проб	15
1.2.2 Анализ данных	17
1.2.3 Статистический анализ	17
1.3 Результаты экстраполяции значений индекса <i>ТРF</i> _{chem} на прибрежных	
акваториях Владивостока	18
1.4 Результаты определения и калибровки индекса <i>TPF</i> _{chem} на акватории залива	
Находка	20
1.5 Атлас изменений <i>TPF</i> _{chem} на прибрежных акваториях Владивостока и в заливе	
Находка	22
1.6 Рекомендации для применения методов установления ПДУ, пороговых величин	
ERL_q, ERM_q и ERD_q	52
1.6.1 Метод определения ПДУ общего уровня химического загрязнения донных	
отложений	52
1.6.2. Рекомендации для выделения основного фактора загрязнения и	
определения загрязняющих веществ, используемых при вычислении	
TPF _{chem}	54
1.6.3 Рекомендации для построения индекса <i>ТРF</i> _{chem}	54
1.6.4. Рекомендации для первичного определения ПДУ и пороговых величин	
ERL_{q}, ERM_{q} и ERD_{q}	55
1.6.5. Рекомендации для доказательства полученной величины ПДУ	60
2 Результаты применения различных аут- и синэкологических индексов и параметров	
макрозообентоса в мониторинговых исследованиях	62
2.1 Современное состояние, актуальность, цели и задачи исследования	62
2.2 Материалы и методы	65
2.2.1 Использованные материалы, отбор и обработка проб	65
2.2.2 Анализ данных	65
2.2.3 Статистический анализ	71

2.3 Эффективность биотических индексов при оценке уровня загрязнения и	
эвтрофикации	71
2.4 Экологическое состояние исследованных акваторий	76
2.4.1 Прибрежная акватория Владивостока	76
2.4.2 Двинский, Кандалакшский и Онежский заливы Белого моря	83
2.4.3 Венинский полигон	91
2.4.4 Луньское месторождения – район платформы Лун-А	95
2.4.5 Пильтун-Астохское месторождения – район платформы ПА-А	
(Моликпак)	102
2.4.6 Пильтун-Астохское месторождения – район платформы ПА-Б	107
2.5 Схема анализа качества морской среды и рекомендации для применения	
биотических индексов при определении качества морской среды	112
3 Совершенствование технологии ведения онлайн базы данных «загрязнение морей»,	
региональных баз данных и расширение перечня предоставляемой потребителям	
информации	114
3.1 Этапы проведения работ по теме	114
3.2 Экспедиционные исследования в 2023 году	115
3.2.1 Основание проведения исследований	115
3.2.2 Цели и задачи исследований	115
3.2.3 Районы и последовательность выполнения работ	116
3.2.4 Виды наблюдений и работ	116
3.2.5 Используемые при проведении исследований суда, приборы и	
оборудование	117
3.2.6 Полученные результаты	117
3.3 Экспедиционные исследования в 2004 году	120
3.4 Подготовка материалов для передачи в ФГБУ «ГОИН»	122
3.5 Анализ многолетних трендов загрязнения морской среды	123
3.6 Итоги работ	125
4 Разработка прикладного программного обеспечения по обработке временных рядов	
наблюдений за уровнем моря для повышения эффективности предвычисления	
приливов	127
4.1 Актуальность, современное состояние и ожидаемые результаты	127
4.2 Анализ данных наблюдений над уровнем моря	128
4.2.1 Выбор станций для расчёта приливных постоянных	128
4.2.2 Расчет и анализ гармонических постоянных	128

4.2.3 Средний уровень моря	135
4.2.4 Уточнение и пополнение каталога ГП по зарубежным водам	
Тихого океана	141
4.3 Программный комплекс обработки рядов наблюдений над уровнем моря	141
4.3.1 Значимость сведений об экстремальных значениях уровня	141
4.3.2 Исходные данные наблюдений станций ДВ региона	142
4.3.3 Расчет повторяемости годовых экстремальных значений уровня	142
ЗАКЛЮЧЕНИЕ	146
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	151
ПРИЛОЖЕНИЕ А	158
ПРИЛОЖЕНИЕ Б	170
ПРИЛОЖЕНИЕ В	176
ПРИЛОЖЕНИЕ Г	199

ВВЕДЕНИЕ

В отчете представлены работы по проекту 4.6 «Развитие моделей, методов и технологий мониторинга гидрохимического состояния и загрязнения морей России и оценки гидрологического и гидрохимического состояния морей и морских устьев рек» Плана научно-исследовательских и технологических работ Росгидромета на 2024 год, выполненные ФГБУ «ДВНИГМИ».

Проект объединяет широкий спектр аналитических, технологических и прогностических работ, направленных на обеспечение безопасной жизнедеятельности населения Дальнего Востока России, надежного функционирования морского транспорта и других видов хозяйственной деятельности в этом регионе за счет предоставления качественной и достоверной информации о состоянии морской среды, прогнозов уровня моря и высоты приливов.

В отчете представлены результаты работ этапа 2024 г. по четырем направлениям:

1) Совершенствование методических основ мониторинга состояния морской среды (тема 4.6.2).

2) Экспериментальная разработка и экспедиционная проверка современных методов исследования состояния и уровня загрязнения морской среды для внедрения на сети мониторинга (тема 4.6.3).

3) Совершенствование технологии ведения онлайн базы данных «загрязнение морей», региональных баз данных и расширение перечня предоставляемой потребителям информации (тема 4.6.4).

4) Разработка новых моделей предвычисления приливных колебаний для предвычисления приливов на акваториях арктических морей (тема 4.6.14).

Актуальность задач, решаемых в данном проекте, определяется необходимостью совершенствования и развития методологических и методических подходов К экологическому мониторингу, восстановления исторических данных измерений параметров морской среды с целью пополнения Госфонда РФ недостающими материалами, а также формирование регионального фонда данных для обеспечения научных и прикладных исследований на дальневосточных акваториях. Следует подчеркнуть, что в практике мониторинга окружающей среды за рубежом наметилась тенденция к разработке показателей, снижающих стоимость и время, необходимое для получения результатов оценки ее состояния, и именно этому посвящены работы по темам 4.6.2 и 4.6.3. обеспечивается Непосредственное выполнение этих исследований во многом совершенствованием, развитием и пополнением существующих баз данных, которые аккумулируют результаты наблюдений над гидролого-гидрохимической обстановкой,

загрязнением вод и донных отложений (тема 4.6.4). Естественно, актуальным является и усовершенствование навигационных пособий, в данном случае – Таблиц приливов, что в частности, обеспечивает повышение безопасности мореплавания (тема 4.6.14).

Цель проекта – испытание методов оценки экологического состояния морской среды на основе анализа сообществ макрозообентоса и определения допустимого уровня химического загрязнения осадков. Наряду с этим – это апробация адаптированных и разработанных методов и подходов к анализу состояния морской среды с позиций биоиндикации на основе использования макрозообентоса, совершенствование онлайн базы данных «загрязнение морей», региональных баз данных и расширение перечня предоставляемой потребителям информации. Кроме того, в цель работы входит улучшение методов анализа и расчета приливов, а также создание программного комплекса, позволяющего повысить эффективность расчета гармонических постоянных за счет объединения инструментов по подготовке рядов данных наблюдений за уровнем моря, алгоритмов цифровой фильтрации и методов вычисления.

Работы проекта направлены на:

a) повышение качества и оперативности получения достоверной информации о состоянии морской среды за счет совершенствования и модернизации существующих и разработки новых методов анализа результатов наблюдений с использованием донных животных;

б) создание базы для обеспечения информацией о состоянии морской среды федеральных органов исполнительной власти, администраций приморских субъектов РФ, международных организаций, подразделений Росгидромета, научно-исследовательских учреждений других ведомств и РАН, высших учебных заведений и природопользователей;

в) повышение качества предвычислений приливного уровня для календарных навигационных пособий Таблицы приливов за счет увеличения точности расчетов гармонических постоянных посредством улучшения обработки исходных данных с помощью цифровых фильтров.

Отчет состоит из введения, четырех разделов, заключения и четырех приложений. В отчете приведена обширная библиография по всем направлениям.

Первый раздел посвящен продолжению работ 2020–2023 гг. по совершенствованию системы методологических и методических подходов к экологическому мониторингу с использованием донных животных и их сообществ на примере залива Петра Великого Японского моря. Этап 2024 г. включает результаты опытного применения методики построения интегрального показателя для характеристики общего уровня загрязнения

(индекс TPF_{chem}) и метода, предназначенного для определения ПДУ, пороговых величин ERL_q , ERM_q и ERD_q для TPF_{chem} , а также рекомендации для выполнения этих операций.

Во втором разделе показано, что для анализа экологического состояния и степени повреждения донного населения необходимо и достаточно применение всего пяти интегральных характеристик – индексов TPF_{bio} , AMBI и *M-AMBI*, $\Pi \mathcal{P}C$ и *W*-статистики. Применение индекса TPF_{bio} в настоящий момент ограничено заливом Петра Великого, так как для остальных акваторий, рассматриваемых в настоящем Отчете, не существует классификации донных животных по отношению к загрязнению. Кроме того, разработаны схема и рекомендации для анализа экологического состояния морской среды, которая включает аут- и синэкологический подходы.

Третий раздел посвящен совершенствованию технологии ведения онлайн базы данных «загрязнение морей», региональных баз данных и расширение перечня предоставляемой потребителям информации. В 2024 году работы выполнялись в трех направлениях:

1) Дополнение региональной БД по дальневосточным морям результатами 2023 г., включающими данные о гидролого-гидрохимическом состоянии, уровне загрязнения морской среды и гидробиологические параметры в контролируемых прибрежных и фоновых районах залива Петра Великого (Японское море);

 Перевод в электронный формат с бумажных носителей исторических данных экспедиционных и мониторинговых исследований по программе ОГСН в заливе Петра Великого за 2004 г.;

3) Передача в ФГБУ «ГОИН» для пополнения БД «Загрязнение морей» электронных массивов MS-Excel с данными за 2004 и 2023 гг.

В четвертом разделе для шести пунктов (Владивосток, Находка, Посьет, Преображение, Рудная Пристань и мыс Сосунова) приводятся гармонические постоянные прилива и средний уровень моря, полученные за период с 2016 по 2023 г. Уточнены значения среднего уровня моря для основных и дополнительных пунктов по зарубежным водам Тихого океана; все уточнения внесены в Таблицы приливов на 2026 г. Реализован программный комплекс по обработке рядов наблюдений над уровнем моря, позволяющий производить предварительную обработку данных наблюдений методами цифровой фильтрации, выполнять гармонический анализ с определением характеристик волн прилива методами Дудсона и МНК, формировать Таблицы приливов. Для постов наблюдения за уровнем моря, расположенных на побережье Японского моря, рассчитаны годовые экстремальные величины суммарных уровней моря редкой повторяемости один раз в 5, 10, 25 и 50 лет.

1 Результаты опытного использования методов оценки экологического состояния морской среды на основе анализа сообществ макрозообентоса и определения допустимого уровня химического загрязнения осадков

В ходе выполнения НИР 2020–2023 гг. был разработан и описан метод, предназначенный для определения предельно допустимого уровня (ПДУ) общего химического загрязнения осадков (*TPF*_{chem}) [1]. ПДУ – это законодательно утверждённая верхняя граница величины уровня фактора (шум, радиоактивность, напряжённость электромагнитного поля, концентрация веществ и т. д.), которая допускается при той или иной человеческой деятельности, как не приводящая к травмам или другим повреждениям организма [2, 3]. В экологии под ПДУ понимают максимальный уровень воздействия радиации, шума, вибрации, магнитных полей и иных вредных физических (и химических – прим. автора) воздействий, который не представляет опасности для здоровья человека, состояния животных, растений, их генетического фонда [4].

1.1 Современное состояние, актуальность, цель и задачи исследования

Необхолимость применения некого интегрального который показателя. характеризует общий уровень химического загрязнения осадков и объединяет концентрации нескольких загрязнителей, желательно приоритетных, и в наилучшей степени отражающих влияние хотя бы основных источников загрязняющих веществ (далее – 3В) возникает по следующей причине. ЗВ в естественных условиях действуют на живые организмы комплексно, суммируясь, усиливая или, наоборот, ослабляя эффекты эффектов называется отдельных веществ. Усиление таких синергизмом комбинированным воздействием двух или более факторов (обычно химических), которое характеризуется тем, что их совместное биологическое действие значительно превышает эффект каждого компонента и их суммы [5, 6]. Однако один только ПДУ недостаточен для описания экологического состояния акватории.

В ЕС, США и Канаде выделяют две степени загрязнения почв и осадков [7, 8]. Первая – т.н. «заданное значение» (target value) – это уровень, к которому следует стремиться, чтобы восстановить функциональные свойства почвы (осадка) для жизни людей, растений и животных. Вторая – «значение коррекции» (intervention value) – уровень, когда такие свойства сильно снижены или представляют опасность. Основу такому делению положила работа Е.Р. Лонга с соавторами [9], которые ввели понятие пороговых показателей *ERL* и *ERM* (effect range-low и effect range-medium). Первый отделяет минимальный уровень воздействия, когда эффекты редки, и концентрации загрязнителей не оказывают заметного влияния на видовой состав и структуру донного населения (неблагоприятное воздействие отмечено в 1,9–27,3 % случаев). Между *ERL* и

ERM лежит область постепенного роста проявления таких воздействий (11,1–75 %); после *ERM* эти эффекты почти облигатны (16,9–100 %). Подобное деление для морских акваторий Канады и США выполнили Дж. Бойд с коллегами [10], определив *TEL* и *PEL* (threshold и probable effects levels).

Общепринято рассматривать донное сообщество как систему, т.е. как нечто большее, чем простая сумма слагающих его элементов – популяций отдельных видов. Соответственно, сообщество должно обладать таким эмерджентным свойством, как внутренняя устойчивость, что может выражаться, в частности, в некотором запаздывании отклика на вредное внешнее воздействие. Поэтому, при изменении внешних условий у сообщества как «целого» элемента системы более высокого порядка, должно происходить изменения параметров обилия и структуры в соответствии с реакцией острого токсикоза, стимуляции с ингибированием, которые характерны для токсикологических опытов in vitro и могут быть аппроксимированы логистической функцией и уравнением экспоненциального полинома. Первая характерна для экологических индексов (видового богатства Маргалефа, разнообразия Шеннона-Винера, выравненности ранговых распределений Пиелу) [11, 12]. Второе – для параметров обилия – плотности поселения и биомассы; это соответствие получается за счет появления на начальных стадиях загрязнения видов-оппортунистов, создающих поселения значительной плотности и биомассы, в результате чего общая биомасса и плотность могут возрастать [13].

В качестве степени антропогенного нарушения сообщества было предложено использовать отклонение показателей обилия и экологических индексов в процентах от нормы (начального горизонтального или почти горизонтального участка кривой) с учетом границ доверительного интервала или стандартной ошибки [11, 12]. Границей начального этапа их изменения, исходя из специфики данных, является 10% рубеж (ПДУ₁₀), что соответствует ненарушенным или почти ненарушенным сообществам макрозообентоса. Другие пороговые показатели – ERL_a и ERM_a (по аналогии с ERL и ERM Лонга), которые ограничивают область прогрессивной деградации – почти линейного падения моделей, описывающих изменения видового богатства и разнообразия донной фауны вдоль градиента *TPF*_{chem}. Еще одна пороговая величина – *ERD*_q – координата точки выхода на плато, которая модельной кривой соответствует области существования специфических сообществ экстремально загрязненных акваторий.

На основе этих соображений в рамках выполнения НИР по теме 4.6.2 [1] был разработан метод определения допустимого уровня химического загрязнения осадков на основе структурных изменений сообществ макрозообентоса. В его основе лежит классификация сообществ донных животных по отношению к уровню внешнего

воздействия и метод оценки экологического состояния макрозообентоса на основе модели зависимости показателя экологического стресса ($\Pi \ni C$) от общей усредненной дисперсии биотических параметров [14]. Моделированию вдоль градиента TPF_{chem} (с определением $\Pi \Box V_{10}$, ERL_q , ERM_q и ERD_q) были подвергнуты распределения количественных характеристик (индексы TPF_{bio} , AMBI, M-AMBI, BOPA, видового богатства Маргалефа, разнообразия Шеннона-Винера, выравненности Пиелу, статистика Кларка и $\Pi \ni C$), а также изменения качественного состава экологических типов сообществ макрозообентоса (доли таксонов, чувствительных и толерантных к загрязнению и эвтрофикации, стено- и эврибионтных по отношению к загрязнению таксонов). Дополнительно были использованы результаты анализа распределения вдоль градиента TPF_{chem} видового богатства и разнообразия основных таксономических групп макрозообентоса [15].

В результате этих исследований были выделены следующие граничные критерии [1, 15]:

— Интактное состояние: ПДУ_{10d} – 10 % снижение видового разнообразия декапод (1,7 усл. ед.; по ретроспективным данным это значение равно минимальному уровню загрязнения донных отложений в начале 30-х годов прошлого столетия, а также фоновым значениям *TPF*_{chem}, полученным в незагрязненных районах залива Петра Великого);

— Почти интактное состояние: ПДУ₁₀ – такое же падение обобщенной функции состояния (далее – ОФС) экологических типов сообществ макрозообентоса (2,0 усл. ед., координата точки наибольшей кривизны ОФС; оптимум II кластера в классификации таксономических групп по отношению к загрязнению; максимальный уровень загрязнения осадков в 30-е годы прошлого столетия);

— Резкое ухудшение условий среды: *ERL*_q и *ERM*_q – соответственно начало и конец области прогрессивной деградации донного населения (2,5 и 3,1 усл. ед.; наиболее быстрое, почти линейное, уменьшение ΟΦС);

— Полное разрушение: *ERD*_q – 4,3 усл. ед.; координата точки выхода ОΦС на плато после падения.

Как и ПДК, ПДУ следует дифференцировать: для акваторий, предназначенных для донного культивирования беспозвоночных, они должны быть жестче, чем, например, для водоемов культурно-бытового использования (соответственно ПДУ_{10d} и ПДУ₁₀).

В сообществах донных животных, обитающих при *TPF*_{chem} < ПДУ₁₀, доминируют экстремально чувствительные и чувствительные по отношению к загрязнению виды, а также экстремально чувствительные и индифферентные к эвтрофикации представители макрозообентоса. Эти группировки отличаются высоким видовым богатством, разнообразием, выравненностью ранговых распределений, высоким и хорошим

экологическим статусом (индексы Маргалефа, Шеннона-Винера, Пиелу, биотический индекс *M-AMBI*), низкими величинами показателя экологического стресса, биоиндикационного индекса TPF_{bio} , который характеризует степень загрязнения на основе видового состава. Степень повреждения донного населения и его местообитаний низка (индекс *AMBI*), а в их составе преобладают относительно крупные животные (статистика Кларка). Затем, по мере роста загрязнения, происходят следующие изменения, описываемые логистическими функциями (15 частных функций экологического состояния: объясненная дисперсия – $89,1\pm2,8\%$):

1. Снижение роли экстремально чувствительных и чувствительных таксонов и увеличение значения толерантных и экстремально толерантных к загрязнению представителей зообентоса;

2. Уменьшение доли стенобионтных и увеличение вклада эврибионтных видов;

3. Замена экстремально чувствительных, индифферентных и толерантных к эвтрофикации животных на оппортунистов первого и второго порядка;

4. Падение видового богатства, разнообразия, выравненности ранговых распределений таксонов, экологического статуса донного населения и роли относительно крупных животных;

5. Рост индекса *TPF*_{bio}, показателя экологического стресса, биотического полихетоамфиподного индекса *BOPA*, степени нарушения донного населения и мест его обитания.

Все эти изменения в наибольшей степени выражены при уровне загрязнения, лежащем в диапазоне между пороговыми величинами ERL_q и ERM_q . В результате этих трансформаций при $TPF_{chem} > ERD_q$ формируются специфические сообщества, почти целиком состоящие из эврибионтных, толерантных и экстремально толерантных к загрязнению оппортунистических таксонов. Эти группировки, в отличие от таковых, обитающих при $TPF_{chem} < \Pi$ ДУ, характеризуются низким видовым богатством, разнообразием, выравненностью и экологическим статусом, обитают в сильно поврежденных загрязнением и эвтрофикацией биотопах, имеют высокий показатель экологического стресса и составлены, преимущественно, из относительно мелких представителей макрозообентоса.

Цель настоящего исследования – испытание методов оценки экологического состояния морской среды на основе анализа сообществ макрозообентоса и определения допустимого уровня химического загрязнения осадков. Для достижения этой цели необходимо решить следующие задачи:

1) Систематизировать и реструктурировать гео-, аут- и синэкологические данные, полученные в результате выполнения НИР 4.6.2 и 4.6.3 в 2020–2023 гг.;

 Подготовить данные для картирования некоторых акваторий залива Петра Великого Японского моря по общему уровню химического загрязнения донных отложений (*TPF*_{chem});

3) Выполнить построение карт распределения TPF_{chem} , которые отражают ПДУ и величины ERL_q , ERM_q и ERD_q ;

4) Описать рекомендации для применения разработанного метода установления ПДУ и граничных критериев *ERL*_q, *ERM*_q и *ERD*_q.

1.2 Материалы и методы исследований

1.2.1 Использованные данные, сбор и обработка проб

Материалом для анализа послужили данные, полученные в 1982–2022 гг. на станциях Общегосударственной службы наблюдений (ОГСН) в заливе Петра Великого Японского моря (заливы Амурский, Уссурийский, Находка, пролив Босфор Восточный) (рисунок 1.1, таблица 1.1). Пробы грунта отбирали дночерпателем Ван-Вина (0,11 м²); на каждой станции часть верхнего слоя осадков (2–3 см) замораживали для последующего измерения концентраций загрязняющих веществ.

Рисунок 1.1 – Расположение станций ОГСН на акватории зал. Петра Великого

Станция	Долгота	Широта	Использованные данные или начало опробования, год								
Амурский залив											
A11	131,9000 43,2500 1982										
A12	131,7800	43,2533	1982								
A16	131,8833	43,1833	1982								
A24	131,8533	43,1200	1982								
A28	131,7350	43,0833	1982								
A35	131,6800	42,9583	2006								
A37	131,6100	42,9383	1982								
A39	131,4383	42,8867	1990								
A52	131,6550	43,1000	2004								
Уссурийский залив											
U100	131,9900	43,0883	1982								
U103	132,0250	43,1133	2002								
U104	132,3067	43,2737	1982								
U105	132,3183	43,1283	1990								
U106	132,1833	43,1133	1982								
U108	131,9433	42,9333	1982								
U112	132,3067	43,0133	2006								
U117	132,2000	42,8867	2007								
U208	132,0000	42,9833	1984								
Бу	хта Золото	й Рог и пр	олив Босфор Восточный								
Z1	131,9283	43,1067	1982								
Z7	131,8908	43,1110	1982								
Z11	131,8750	43,0988	1982								
Z12	131,8767	43,0917	1982								
Z14	131,8697	43,0817	2006								
Z18	131,9060	43,0550	1982								
Z19	131,9050	43,0733	1990								
Z22	131,8942	43,0900	1982								
Z23	131,8510	43,0693	1990								
		Залив І	Находка								
N1	132,8700	42,7883									
N2	132,8867	42,8000									
N7	132,9150	42,8183									
N12	132,9150	42,7183									
N14	132,9333	42,7417									
N15	132,9383	42,7667	2010								
N18	132,9733	42,8250	2010								
N25	5 133,0667 42,7467										
N33	133,0055	3,0055 42,7223									
N35	5 133,0167 42,7333										
N36	N36 132,9000 42,7767										
N152	132,9167	42,7533									

Таблица 1.1 – Координаты станций ОГСН и использованные данные

Содержание всех использованных для характеристики общего уровня химического загрязнения поллютантов (Cu, Pb, Zn, фенолы, хлорированные и общие углеводороды) измеряли в лаборатории мониторинга загрязнения морских вод ФГБУ «Приморское УГМС» по стандартным методикам Росгидромета [16].

1.2.2 Анализ данных

Для характеристики общего уровня химического загрязнения донных отложений применяли индекс:

$$TPF_{chem} = (PHC + PHE + Pb + Cu + SDDT) / 5$$
(1.1)

где РНС, РНЕ, Рb, Cu и SDDT — 5-ранговые оценки (*ln*-масштаб) содержания углеводородов, фенолов, свинца, меди, суммы ДДТ и его метаболитов [1, 17]. Эти элементы и соединения относятся к приоритетным 3В, а их набор для залива Петра Великого был определен методами факторного анализа. Вычисление *TPF*_{chem} производили при помощи программы TpfCalc, разработанной одним из авторов в среде STATISTICA [18].

При построении карт распределения TPF_{chem} на прибрежных акваториях Владивостока и залива Находка (станции ОГСН, соответственно с 1982 по 2022 гг. и с 2010 по 2022 гг.; всего 41 и 13 рисунков) использовали величины ПДУ₁₀, ПДУ₁₀, ERL_q , ERM_q и ERD_q [см. ВВЕДЕНИЕ]. Данные по загрязнению донных отложений за 2023 г. оказались непригодными для дальнейшего анализа из-за отсутствия результатов измерения концентраций пестицидов.

1.2.3 Статистический анализ

При статистической обработке применяли процедуры и тесты, предлагаемые пакетами прикладных программ PRIMER, STATISTICA и средой R [19–23]. Экстраполяцию данных на периоды, когда измерение 3В не производили, выполняли посредством линейного регрессионного анализа с вычислением коэффициента корреляции (r) и его статистической оценкой (проверка H_0 : r=0; ANOVA).

Для залива Находка выполнено выделение главного загрязняющего фактора методом факторного анализа [1]. Факторы выделяли методами главных компонент и наибольшего правдоподобия; для упрощения их структуры и получения легко интерпретируемых решений использовали косоугольное вращение промакс (модули *psych* и *GPArotation* среды R) [22]. Число компонент (факторов) выбирали с соблюдением

принципа экономии на основе критериев Кайзера-Харриса, теста каменной осыпи и параллельного анализа.

В соответствии с принципом экономии, из двух конкурирующих решений выбирают модели, включающие минимальное число факторов. По критерию Кайзера-Харриса отбирают факторы с собственными числами >1 (изменения фактора объясняют >10% дисперсии измеряемых переменных). Тест каменной осыпи предполагает выбор числа факторов, который приходится на область до перегиба линии зависимости собственного числа от своего номера, включая, в некоторых случаях, саму точку наибольшей кривизны этой линии. Параллельный анализ основан на выделении компонент (факторов) из случайных матриц данных той же размерности, что и исходная матрица. Если собственное значение, полученное по реальным данным, выше, чем соответствующее усредненное собственное значение для набора случайных матриц данных, тогда такая компонента используется [24]. Эта симуляция была дополнена процедурой бутстреп-оценки (ресэмплинг) с идентичной интерпретацией результатов.

1.3 Результаты экстраполяции значений индекса *TPF*_{chem} на прибрежных акваториях Владивостока

Результаты экстраполяции значений индекса *TPF*_{chem} на прибрежных акваториях Владивостока представлены на рисунках 1.2 и 1.3.

Рисунок 1.2 – Зависимости между *TPF*_{chem} искомых и референтных станций

Рисунок 1.3 – Зависимости между *TPF*_{chem} искомых и референтных станций

Экстраполяция данных на периоды, когда измерение 3В не производили, потребовалась для 11 из 27 станций (рисунок 1.2, 1.3). В большинстве случаев наилучшие результаты аппроксимации достигались линейными функциями, в двух полиномиальными и в одном – экспоненциальной (станции соответственно *A35*, *A52*, *U103*, *U103*, *U105*, *U112*, *U208* и *Z19*, *A39* и *Z23*, *Z14*). Объясненная дисперсия почти во всех вариантах превысила 70 % ($r^2 = 0,721-0,927$, p = 0,000), и лишь для станции *Z23* она оказалась слегка ниже ($r^2 = 0,675$, p = 0,000). Таким образом, результаты этой процедуры оказались весьма успешными и позволили заполнить временные пропуски у 41 % точек опробования.

1.4 Результаты определения и калибровки индекса *TPF*_{chem} на акватории залива Находка

Для залива Находка наиболее вероятным является однофакторное решение, причем изменения этого единственного фактора объясняют, в среднем, $62,3\pm1,2$ % (диапазон изменения – 55,5–68,7 %) дисперсии концентраций загрязняющих веществ (таблица 1.2). Решения с большим числом факторов маловероятны из-за высокой коррелированности кластеров первичных переменных ($r = 0,528\pm0,041$ и 0,349– 0,729). Следует отметить, что для некоторых лет (2011, 2013, 2016, 2018 гг.) весьма возможно и двухфакторное решение, с выделением «индустриального» и «терригенного» факторов, как это было показано авторами ранее для прибрежной акватории Владивостока [25, 26]. При этом на «терригенность» второго фактора отчетливо указывает включение в него маркеров этого процесса – железа, марганца, никеля, а иногда и фенолов.

Набор ЗВ, которые следует использовать при вычислении TPF_{chem} для залива Находка, заметно отличается от такового для прибрежных акваторий Владивостока (общие углеводороды – ОУ, фенолы, сумма ДДТ и его метаболитов – ΣДДТ, медь и свинец) и включает, кроме ОУ, ΣДДТ и Сu, хром и цинк. В связи с этим была произведена калибровка TPF_{chem} для этого района относительно TPF_{chem} , определяемого по стандартному набору ЗВ (рисунок 1.4). В результате были получены значения ПДУ₁₀, ПДУ₁₀, пороговых величин ERL_q , ERM_q и ERD_q , которые необходимы для построения ежегодных карт распределения TPF_{chem} и составляют соответственно 1.6, 1.9, 2.5, 3.1 и 4.5 усл. ед. (значения ERL_q и ERM_q совпадают).

Загрязнитель	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	m	$\pm SE$
Углеводороды	0,922	0,922	0,937	0,914	0,877	0,703	0,803	0,883	0,921	0,832	0,942	0,891	0,900	0,880	0,019
Фенолы	0,651	0,543	-0,111	-0,353	0,550	0,681	0,395	0,507	0,300	0,737	0,761	0,668	0,615	0,457	0,097
ΣДДТ	0,700	0,819	0,939	0,872	0,902	0,638	0,905	0,815	0,866	0,564	0,915	0,886	0,343	0,782	0,051
ΣΓΧЦΓ	-0,766	0,034	-0,213	-0,049	0,400	0,531	0,935	0,961	0,688	0,640	0,592	0,512	0,313	0,352	0,141
Cd	0,189	0,349	0,597	0,162	0,872	-0,020	-0,177	0,644	0,571	0,647	0,823	0,641	0,898	0,477	0,100
Со	0,545	0,566	0,747	0,736	0,724	0,752	0,735	0,570	0,690	0,837	0,323	0,647	0,768	0,664	0,039
Cr	0,930	0,947	0,922	0,970	0,945	0,796	0,969	0,853	0,917	0,968	0,904	0,963	0,976	0,928	0,015
Cu	0,788	0,881	0,927	0,935	0,904	0,928	0,941	0,928	0,810	0,914	0,967	0,924	0,945	0,907	0,015
Fe	0,855	0,789	0,834	0,900	0,859	0,808	0,838	-0,070	0,847	0,892	0,841	0,596	0,850	0,757	0,075
Hg	0,951	0,831	0,856	0,904	0,903	0,914	0,857	0,780	0,607	0,601	0,934	0,925	0,904	0,844	0,033
Mn	0,677	0,769	0,650	0,342	0,811	0,840	0,773	0,632	0,807	0,768	0,739	0,482	0,817	0,701	0,042
Ni	0,677	0,554	0,793	0,871	0,844	0,911	0,913	0,798	0,804	0,888	0,739	0,564	0,911	0,790	0,036
Pb	0,880	0,907	0,894	0,856	0,890	0,935	0,912	0,939	0,898	0,925	0,896	0,944	0,852	0,902	0,008
Zn	0,922	0,900	0,957	0,957	0,926	0,942	0,967	0,910	0,876	0,596	0,942	0,963	0,956	0,909	0,028
Объясненная дисперсия	8,344	7,773	8,639	8,258	9,612	8,492	9,523	8,311	8,416	8,597	9,550	8,476	9,323	8,717	0,170
Доля объясненной дисперсии	0,596	0,555	0,617	0,590	0,687	0,607	0,680	0,594	0,601	0,614	0,682	0,605	0,666	0,623	0,012

Таблица 1.2 – Результаты факторного анализа концентраций ЗВ в грунтах залива Находка

Примечание. Жирным шрифтом выделены нагрузки > 0,7 для отдельных факторов и ЗВ, включенных в *TPF*_{chem}, после усреднения; *m* – среднее значение, *SE* – ошибка репрезентативности.

Рисунок 1.4 – Результаты калибровки индекса *TPF*_{chem}, определенного для залива Находка, по величинам стандартного *TPF*_{chem}

1.5 Атлас изменений *TPF* _{chem} на прибрежных акваториях Владивостока и в заливе Находка

Ранее было показано, что акватории зал. Петра Великого вблизи Владивостока в разной степени подвержены загрязнению, но на большинстве станций оно превышает природный геохимический фон и «безопасный» уровень хотя бы по одному из поллютантов [25]. Прежде всего, это относится к углеводородам, пестицидам, Cd и Hg. Основными источниками поступления загрязняющих веществ являются сбросы сточных вод г. Владивосток и близлежащих населенных пунктов (нефтепродукты, пестициды, фенолы, Cd, Cu, Hg, Pb, Zn), а также реки, впадающие в северные части Амурского и Уссурийского заливов (Со, Mn, Ni, Fe). Самые загрязненные акватории – бухта Золотой Рог и пролив Босфор Восточный, где концентрации металлов и углеводородов выше естественного фона и «безопасного» уровня в несколько раз. Амурский залив характеризуется более умеренным уровнем загрязнения, а Уссурийский — является наиболее чистым среди изученных районов. В настоящее время химическое загрязнение, наряду с эвтрофикацией, является основным фактором, который обусловливает экологическое состояние донного населения, но его сильное проявление весьма локально и отчетливо наблюдается только в наиболее загрязненных областях исследованной акватории.

При этом для временных изменений TPF_{chem} характерна двухфазная динамика с ростом на первом этапе, последующим незначительным снижением и стабилизацией с начала — первой половины 1990-х гг. [27]. Для всех загрязняющих веществ и, как следствие, TPF_{chem} , характерен высокий уровень изменчивости, который затрудняет идентификацию процессов, «ответственных» за наблюдаемые у них схемы многолетних

изменений. Очищение осадков и поддержание в них баланса загрязняющих веществ на исследованной акватории Амурского залива осуществляется, скорее всего, за счет деятельности микроорганизмов и аккумуляции загрязняющих веществ макрозообентосом, а в бухте Золотой Рог – микроорганизмами и высокими темпами осадконакопления. В открытых районах Уссурийского залива заметную роль играет гидродинамическая сортировка отложений, которая способствует вымыванию наиболее тонких фракций, обогащенных всеми загрязняющими веществами.

Кроме того, на основе применения процедур разведочного, конфирматорного факторного и кросскорреляционного анализа, а также классификационных построений, использующих теорию нечетких множеств, показано, что временной ход концентраций загрязняющих веществ и их производных индексов представлен четырьмя типами балансовых кривых (профилей) – первичного и вторичного загрязнения, экспоненциального роста и полимодальной динамики [26]. Эти профили соответствуют двум основным источникам загрязнения – индустриальному, который объединяет стоки Владивостока и близлежащих поселений, эоловый разнос и приток загрязняющих веществ из-за выпадения осадков, и терригенному – поступлению загрязнителей из водотоков, впадающих в Амурский и Уссурийский заливы. Действие первого источника преобладает в бухтах Золотой Рог, Диомид и прол. Босфор Восточный, второго — в Амурском и Уссурийском заливах; открытое прибрежье Владивостока испытывает влияние обоих источников с доминированием второго. Терригенный источник, в связи с различиями процессов, которые обеспечивают динамику балансовых кривых, следует подразделять на «обычный», включающий профили вторичного загрязнения и экспоненциального роста, И «экстремальный» (профили полимодальной динамики).

У профилей вторичного загрязнения относительно таковых первичного наблюдается запаздывание в достижении максимума (6–7 лет) [26]. Другое свойство большинства профилей этого типа – их обратная связь с расходом воды р. Раздольной, в результате чего поступление ее вод ведет к снижению концентраций Си и Рb в осадках (разбавляющий эффект). В группе экспоненциального роста связь временного хода профилей и расхода воды положительна – приток вод р. Раздольной увеличивает содержание Fe, Ni и фенолов, причем рост концентраций последних отражает усиление эвтрофикации. Временные изменения выделенных профилей обусловлены соотношением процессов поступления и «самоочищения» осадков, причем динамика факторов, входящих в данные группы, довольно точно отражает последовательность внешних событий – спад экономической активности и ее некоторое оживление, снижение применения тетраэтилсвинца и полный запрет этой присадки, экстремальные паводковые явления и т.д.

Динамика общего уровня химического загрязнения осадков – индекса TPF_{chem} – как и отдельных ЗВ, обусловлена действием индустриального и терригенного факторов и, естественно, процессов самоочищения, что и определяет двухфазный временной ход его значений, а также существенные пространственно-временные флуктуации, которые отражены на рисунках 1.5–1.25. Такие же флуктуации характерны и для залива Находка (рисунок 1.26–1.32). В некоторые годы здесь проявляется действие не только индустриального, но и терригенного факторов (см. раздел 1.4). Однако детальный анализ временного хода ЗВ на этой акватории не входит в цель и задачи настоящего Отчета.

Рисунок 1.5 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.6 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.7 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.8 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.9 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.10 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.11 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.12 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.13 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.14 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.15 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.16 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.17 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.18 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.19 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.20 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.21 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.22 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.23 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.24 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Рисунок 1.25 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) на прибрежных акваториях Владивостока

Итак, за исключением прибрежья Владивостока, в 1982–1985 гг. общий уровень загрязнения донных отложений (и соответственно морской среды) был ниже ПДУ₁₀ и даже ниже ПДУ₁₀ для десятиногих раков почти на всей акватории Амурского и Уссурийского заливов (2,0 и 1,7 усл. ед.; в Уссурийском заливе – до 1987 г., включительно) (рисунок 1.5–1.25). Затем экологическая ситуация последовательно ухудшалась вплоть до 2010 г., когда TPF_{chem} превысил ERL_q (2,5 усл. ед.) на большей части исследованной акватории, а во всей прибрежной зоне полуострова Муравьева-Амурского – и ERM_q (3,1 усл. ед.). Следовательно, оба залива оказались малопригодными для обитания подавляющего большинства донных гидробионтов.

К 2015 г. качество морской среды в районе мониторинга заметно улучшилось, что особенно заметно для Уссурийского залива, уровень загрязнения упал ниже ERL_q , а на части его акватории – и ниже ПДУ₁₀. Вероятно, это произошло из-за сдачи в эксплуатацию очистных сооружений, приуроченной к саммиту АТЭС, состоявшемуся во Владивостоке на острове Русский в 2012 г., а также закрытию свалки в бухте Горностай (Уссурийский залив) и сооружению над ней саркофага. В дальнейшем, общая ситуация с загрязнением донных отложений сохранялась примерно на одном уровне, но испытывала существенные пространственно-временные флуктуации, что обусловлено изменениями силы действия факторов и процессов, рассмотренных в начале данного раздела.

Рисунок 1.26 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.27 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.28 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.29 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.30 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.31 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Рисунок 1.32 – Распределение общего уровня химического загрязнения донных отложений (*TPF*_{chem}, усл. ед.) в заливе Находка

Как и на прибрежной акватории Владивостока, общий уровень химического загрязнения осадков в заливе Находка подвержен значительным пространственновременным колебаниям (рисунок 1.26–1.32). Существенное и экстремальное загрязнение (соответственно выше ERM_q и ERD_q) характерно для бухт Находка и Врангеля. В остальной части залива в исследованный период значения TPF_{chem} варьировали в диапазоне от ПДУ₁₀ до 3,39 усл. ед., превышая ERM_q , но обычно лежали в пределах ERL_q – ERM_q – т.е. в области прогрессивной деградации донного населения. Следовательно, качество морской среды в данном районе далеко от благополучного уровня для большинства гидробионтов, хотя степень снижения ее статуса (в экстремуме) явно не столь существенна, как у Владивостока.

Таким образом, испытание методов оценки экологического состояния морской среды на основе анализа сообществ макрозообентоса и определения допустимого уровня химического загрязнения осадков показало их применимость на любой акватории. Они позволяют кратко и наглядно оценивать состояние донного населения и пригодности морской среды для его обитания, но требуют наличия данных о концентрациях загрязняющих веществ в грунтах искомой акватории и их предварительного статистического исследования методами факторного анализа с последующей калибровкой полученного индекса общего загрязнения осадков.

1.6 Рекомендации для применения методов установления ПДУ, пороговых величин *ERL*_q, *ERM*_q и *ERD*_q

Доказательное определение ПДУ₁₀, а также пороговых величин ERL_q , ERM_q и ERD_q требует привлечения большого объема исходного материала, который, в идеальном варианте, должен включать результаты многолетних наблюдений над содержанием В донных отложениях, загрязняющих веществ составом И количественным характеристикам макрозообентоса исследуемой акватории. Последнее предполагает информацию о встречаемости, плотности поселения, биомассы, экологических индексах $(R, H', e, W, AMBI, M-AMBI, TPF_{bio}, ПЭС, ВОРА)$. Виды и таксоны более высокого ранга должны быть расклассифицированы по бионтности, отношению к уровню загрязнения и эвтрофикации, сообщества – сгруппированы по экологическим типам на основе показателя экологического стресса и, кроме того, – выделены императивные факторы, ответственные за дифференциацию этих группировок. Желательно также иметь списки видов донной фауны для интактного периода. Такие данные, скорее всего, малодоступны или требуют дополнительных изысканий, подробное описание которых и статистических процедур, использованных в этих построениях, представлены в [13, 21, 22, 28–36].

Очень часто получение этой информации является весьма трудоемким и дорогостоящим. Однако экономия средств и усилий для оценки реального ущерба и мониторинга окружающей среды в настоящее время представляется нам крайне опасной, чему существует множество свидетельств. Отметим лишь, вслед за В.А. Красиловым [6], что «...вид, разрушающий биоценотическую систему и подрывающий основы существования последующих поколений, обречен на вымирание. ... Общество, разрушающее среду в процессе потребления, вступает в противоречие с ... законами [природы] и лишает себя будущего». Схема определения ПДУ₁₀ и пороговых величин *ERL*_q, *ERM*_q и *ERD*_q представлена на рисунке 1.33.

1.6.1 Метод определения ПДУ общего уровня химического загрязнения донных отложений

Метод определения предельно допустимого уровня (ПДУ₁₀) для общего химического загрязнения донных отложений (*TPF*_{chem}), при наличии указанной выше информации, сводится к выполнению довольно обширного спектра вычислительных процедур и включает три основных этапа:

 Выделение основного фактора загрязнения, определение загрязняющих веществ, необходимых для вычисления *TPF*_{chem} методами факторного анализа и построение самого индекса;

52

- 2) Первичное определение ПДУ (а также пороговых величин ERL_q и ERM_q) на основе сравнения результатов стандартного нелинейного оценивания изменений количественных характеристик макрозообентоса (R, H', e, W, AMBI, M-AMBI, TPF_{bio}, ПЭС, BOPA) и еНОF моделей, описывающих распределение таксономических групп и таксонов макрозообентоса более низкого систематического ранга вдоль градиента TPF_{chem};
- 3) Доказательство полученной на втором этапе величины ПДУ при помощи анализа вариаций параметров разнообразия, состояния, размерного и экологического состава типов сообществ макрозообентоса в зависимости от общего уровня загрязнения донных отложений, а также привлечения ретроспективных и других имеющихся данных.

точечные – \pm ошибка репрезентативности, цифры – координаты точек ПДУ₁₀, \vec{ERL}_q , \vec{ERL}_q , \vec{ERD}_q и \vec{ERD}_q в единицах TPF_{chem}

Рисунок 1.33 – Схема определения $\Pi Д Y_{10}$ и пороговых величин ERL_q , ERM_q и ERD_q , по [1]

1.6.2. Рекомендации для выделения основного фактора загрязнения и определения загрязняющих веществ, используемых при вычислении *TPF*_{chem}

На этом этапе выполняется определение ведущего фактора загрязнения (PoF_1) при помощи факторного анализа концентраций загрязняющих веществ и производится выбор переменных для построения индекса TPF_{chem} на основе ранжированных концентраций ЗВ. При определении PoF_1 желательно иметь результаты многолетних наблюдений. Пример таких данных, подготовленных в ПП Excel для выполнения факторного анализа, представлен на рисунке 1.34, а алгоритм этой процедуры вынесен в приложение A; ранжирование концентраций ЗВ рекомендуется выполнять в *ln*-масштабе. Следует подчеркнуть, что для каждого района, учитывая своеобразие источников контаминации и набор загрязнителей, поступающих из них, структура индекса TPF_{chem} будет различаться (см. раздел. 1.4).

			<u></u>													_
	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	
1	Point	ОУ	Фенолы	ΣDDT	∑HCH	Cd	Co	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Zn	
2	A11	0.09	4.40	2.95	0.50	0.20	5.20	15.95	30.9	32518	0.095	155.8	58.0	27.3	83.0	_
3	A12	0.06	5.25	2.15	0.35	0.25	7.55	14.75	27.6	29822	0.085	164.8	59.4	20.9	79.8	
4	A16	0.39	3.10	2.85	0.40	0.20	4.65	20.45	31.0	31212	0.15	144.6	43.3	32.5	100.3	
5	A24	0.32	6.90	4.25	0.55	0.70	5.30	19.50	29.5	29175	0.085	125.6	39.1	29.1	53.5	
6	A28	0.07	3.85	1.35	0.45	0.10	2.15	5.55	15.9	13172	0.035	59.2	10.5	9.7	35.9	
7	A35	0.06	4.85	1.60	0.40	0.45	2.60	3.95	13.3	9504.5	0.035	44.9	10.5	18.4	26.2	
8	A37	0.11	4.55	2.25	0.80	0.35	2.55	9.05	20.3	14167	0.095	70.6	11.5	22.3	42.3	
9	A39	0.80	5.60	3.60	0.45	0.80	2.15	23.15	26.1	24154	0.38	101.8	29.3	44.8	66.4	
10	A52	0.05	3.70	8.20	0.25	0.45	6.05	9.85	15.4	18180	0.075	116.7	20.7	13.5	45.4	•
14.4	• H .	/ 1985	/ 1990 /	1995 🏑	2000 🗸	2005 /	2010	2015	2020							

OУ – общие углеводороды, ΣDDT – сумма метаболитов ДДТ, ΣHCH – сумма изомеров гексахлорциклогексана

Рисунок 1.34 – Пример данных, подготовленных в ПП Excel для выполнения факторного анализа

1.6.3 Рекомендации для построения индекса *TPF* chem

В качестве параметра, характеризующего общий уровень загрязнения, можно было бы использовать сами значения фактора PoF_1 , однако эти стандартизированные величины, изменяющиеся примерно в одних и тех же диапазонах, ничего не говорят о реальном содержании загрязнителей. Поэтому, при вычислении TPF_{chem} желательно применение конкретных концентраций 3B, но различия таких концентраций у отдельных веществ могут отличаться на несколько порядков (например, общие углеводороды и сумма ДДТ). Вполне приемлемым решением этой проблемы будет ранжирование концентраций, как это показано в таблице 1.3, что позволит учесть и пороговые концентрации, такие как *ERL* и *ERM*. Для наших данных третий ранг будет означать устойчивое превышение *ERL*, а пятый такое же – *ERM*.

Итак, изложенные выше результаты и соображения позволяют предложить для

характеристики общего химического загрязнения донных отложений прибрежной акватории Владивостока (и, так как в грунтах суммируется общая «антропогенная нагрузка» на акваторию, морской среды в целом) индекс, вычисляемый как:

$$TPF_{chem} = (PHC + Phe + Pb + Cu + \Sigma DDT) / 5$$
(1.2)

где *PHC*, *Phe*, *Pb*, *Cu* и Σ*DDT* – ранговые оценки (5 рангов в *ln* масштабе) содержания общих углеводородов, фенолов, свинца, меди и суммарного содержания ДДТ и его метаболитов, соответственно. Для его вычисления в среде STATISTICA разработана программа TpfCalc [18].

Таблица 1.3 – Ранговые значения (*ln*-масштаб) концентраций соединений и элементов, используемых при вычислении *TPF*_{chem} для прибрежной акватории Владивостока

Соединение,	Ранг										
элемент	1	2	3	4	5						
Углеводороды, мг/г	0,05–0,16	0,17–0,56	0,57–1,89	1,90-6,35	6,36 и более						
Фенолы, мкг/г	0,00–0,03	0,04–0,10	0,11–0,32	0,33–1,02	1,03 и более						
∑ДДТ, нг/г	3,22–7,06	7,07–15,48	15,49–33,95	33,96–74,48	74,49 и более						
Си, мкг/г	3,50-8,38	8,39–20,14	20,15–48,32	48,33–115,88	115,89 и более						
Рb, мкг/г	0,26–1,24	1,25-6,06	6,07–29,30	29,31–141,56	141,57 и более						

Примечание. $\Sigma ДДТ$ — сумма ДДТ и его производных; жирным шрифтом выделены диапазоны, включающие концентрации выше порога *ERM*, жирным курсивом — выше *ERL*, у фенолов *ERL* и *ERM* не установлены.

1.6.4. Рекомендации для первичного определения ПДУ и пороговых величин ERL_a, ERM_a и ERD_a

Это определение подразумевает сравнительную оценку результатов стандартного нелинейного моделирования изменений видового богатства и разнообразия (индексы Маргалефа и Шеннона-Винера) нескольких, наиболее представительных по встречаемости и числу видов, таксономических групп макрозообентоса, а также, по возможности, индексов *TPF*_{bio}, *AMBI*, *M-AMBI* и *BOPA*^{*}, и таковых количественных характеристик донной фауны, исследованных на основе eHOF^{**} моделей. Сравнение производится на основе параметров, наиболее важных в контексте исследования, к которым относятся координаты точек 10-% снижения модельной кривой (ПДУ₁₀) и первого максимума ее кривизны, а также пороговых величин *ERL*_q, *ERM*_q и *ERD*_q.

^{*} Вычисление индексов *TPF*_{bio}, *AMBI*, *M-AMBI* и *BOPA* требует выполнения обширных предварительных исследований, в частности классификации донных животных по отношению к загрязнению и эвтрофикации [29, 30, 37].

Методология и алгоритм еНОГ моделирования вынесены в приложение А.

Процедуру стандартного моделирования следует выполнять после усреднения значений индексов для каждого уровня TPF_{chem} с шагом в 0,2 единицы (предел вычисления TPF_{chem}), что значительно упрощает последующие вычисления. Пример исходных данных, подготовленных в ПП Ехсеl для выполнения нелинейного оценивания, и графический результат этих вычислений представлен на рисунках 1.35 и 1.36. Для вычисления индексов Маргалефа и Шеннона-Винера проще всего использовать ППП PRIMER (опция Analyse \rightarrow DIVERSE). Необходимо подчеркнуть, что модели, получаемые по усредненным данным, практически идентичны таковым для полного набора *R* и *H*' (все станции) соответствующих групп макрозообентоса [38].

	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	E
1	TPF chem	Amp_H	Amp_R	Biv_H	Biv_R	Dec_H	Dec_R	Gas_H	Gas_R	Pol_H	Pol_R	AMBI	MAMBI	BOPA	TPF bio	
2	1.0	0.46	1.5	0.38	3.1	1.00	3.2	0.48	1.7	2.35	12.0	1.59	0.641	0.002	1.79	
3	1.2	0.75	4.5	1.18	3.1	1.21	3.0	0.53	1.8	2.44	11.2	1.77	0.697	0.011	1.98	
4	1.4	0.90	4.4	1.20	3.1	0.00	0.0	0.68	1.8	2.40	11.2	1.77	0.707	0.010	2.12	
-5	1.6	1.19	3.0	1.00	4.5	1.21	3.0	0.55	1.8	2.12	10.8	2.54	0.639	0.053	2.41	
6	1.8	0.98	2.7	1.13	3.4	1.10	3.2	0.77	2.1	2.57	10.4	2.18	0.642	0.019	2.28	
7	2.0	0.54	3.4	1.15	3.6	1.17	3.5	0.55	1.9	2.27	13.5	2.14	0.697	0.029	2.43	
8	2.2	0.75	3.3	0.99	3.7	1.14	1.6	0.75	2.0	2.09	12.3	2.45	0.721	0.029	2.53	
9	2.4	0.59	2.9	0.96	3.2	0.37	1.9	0.52	2.1	2.46	11.9	2.43	0.692	0.044	2.54	
10	2.6	0.34	1.8	0.71	2.8	0.55	2.0	0.60	2.1	2.24	11.8	2.19	0.524	0.042	2.25	-
H	4 F F CL	ırv ∕Co	eff Da	ta 🖉 🖓	/				1	•						

Amp, Biv, Dec, Gas, Pol – соответственно Amphipoda, Bivalvia, Decapoda, Gastropoda и Polychaeta

Рисунок 1.35 – Пример данных, подготовленных в ПП Ехсеl для выполнения процедуры нелинейного оценивания

При выполнении процедуры нелинейного оценивания важную роль играет выбор алгоритма аппроксимации. Для начального вычисления коэффициентов модели ППП STATISTICA предлагает методы Квази-Ньютон, Симплекс, Хука-Дживза (pattern moves) и Poseнброка (pattern search), а для статистической оценки коэффициентов и ANOVA – Гаусса-Ньютона и Левенберга-Марквардта [20]. При использовании алгоритмов Poseнброка и Симплекс получаются более «пологие» модельные кривые, чем таковые при аппроксимации методами Хука-Дживза и Квази-Ньютон, которые часто близки по форме к функциям единичного скачка (рисунок 1.37). Естественно, все это находит свое отражение в итоговых величинах коэффициентов моделей и результатах ANOVA.

Результирующие модели для Гаусса-Ньютона и Левенберга-Марквардта идентичны кривым, вычисляемым алгоритмом Хука-Дживза. Добиться их сходства с функциями, получаемыми другими способами можно (далеко не всегда) при использовании стартовых коэффициентов, которые близки их значениям (до третьего, а то и четвертого знака после запятой), полученным применением соответствующих алгоритмов. В итоге, конечные величины коэффициентов при использовании стандартных процедур часто не совпадают, а ANOVA дает оценку модели, получаемой методом Гаусса-Ньютона или Левенберга-

Штриховые линии показывают область 10 % снижения модельных кривых, цифры – координаты точки ПДУ₁₀ в единицах *ТРF*_{chem}, *r* – коэффициент корреляции, *F* – расчётная величина критерия Фишера, *p* = вероятность справедливости *H*₀

Рисунок 1.36 – Модели изменения различных индексов (все данные) вдоль градиента загрязнения донных отложений

Рисунок 1.37 – Результаты моделирования одних и тех же данных (индекс Шеннона-Винера амфипод) при помощи разных алгоритмов

Марквардта. Подробное описание перечисленных методов содержится на портале StatSoft [39]; уравнение для расчетов включает четыре коэффициента (b0-b3):

$$Par=b0+(((b1)-(b0))/(1+exp(-(b2)*(TPF_{chem}-(b3)))))$$
(1.3)

где Par – биотический параметр. Предварительно, требуется задать стартовые значения коэффициентов, без которых вычисления, скорее всего, окажутся безуспешными. Схема определения стартовых значений для нелинейного оценивания показана на рисунке 1.38.

Рисунок 1.38 – Схема определения стартовых значений для нелинейного оценивания уравнениями (5.12)–(5.14); на графиках б и в коэффициенты b3 и b6 определяют ширину гауссианы, b2 и b5 – координаты максимумов

Коэффициент b2 примерно равен отношению основания мнимого треугольника области почти линейного снижения модельной кривой к ее амплитуде (b0 – b1); естественно величины указанных катетов должны быть выражены в единицах соответствующих осей координат. Для более детального исследования логистической функции и получения ее доверительных границ, если таковые необходимы, следует использовать алгоритм нелинейного оценивания, реализованный в среде R (вынесен в Приложение A) [40].

После получения искомой функции, для первичного определения ПДУ₁₀, и пороговых величин *ERL*_q, *ERM*_q и *ERD*_q, вычисляется ее кривизна и приращение (Curv и Def). Для вычисления кривизны авторы используют простую программу LogCurv, разработанную на базе ППП STATISTICA (рисунок 1.39). В программе Excel создается файл с коэффициентами модели, данные копируются в LogCurv-калькулятор и последовательное нажатие клавиш "Vars" → "Recalculate Spreadsheet Formulas" ведет к получению искомых значений. С вычислением приращения функции все еще проще (рисунок 1.40).

Так как производить дальнейшие расчеты и получать графический материал легче на основе самих функций, ниже приведены уравнения для Curv и Def; схема определения стартовых значений коэффициентов показана на рисунке 1.40:

$$Def = b0 + ((b1) / (exp(((TPF_{chem} - (b2)) / (b3))**2)))$$
(1.4)

$$Curv = b0 + (b1 / (exp(((TPF_{chem} - b2) / b3)**2))) + (b4 / (exp(((TPF_{chem} - b5) / b6)**2)))$$
(1.5)

Далее строим все три функции на одной диаграмме, что проще всего сделать в ППП STATISTICA (см. рисунок 1.33) и определяем искомые ПДУ₁₀, ERL_q , ERM_q и ERD_q графически или аналитически, на основе вычислений. Для ПДУ₁₀ схема таких расчетов показана на рисунке 1.40.

	Data: LogCurv* (8v by 42c)												
		1	2	3	4	5	6	7	8				
		TPFchem	а	b	с	d	Derivation_1	Derivation_2	Curvature				
	1	1,0	2,108956	5,234217	3,814655	3,416068	1,17046703E-11	0,0389930867	0,039				
	2	1,1	2,108956	5,234217	3,814655	3,416068	3,67590480E-11	0,0570950117	0,057				
	3	1,2	2,108956	5,234217	3,814655	3,416068	1,15443455E-10	0,0835953025	0,084				
	4	1,3	2,108956	5,234217	3,814655	3,416068	3,62555377E-10	0,12238446	0,122				
	5	1,4	2,108956	5,234217	3,814655	3,416068	1,13862138E-9	0,179148482	0,179				
	6	1,5	2,108956	5,234217	3,814655	3,416068	3,57589047E-9	0,262189768	0,262				
	7	1,6	2,108956	5,234217	3,814655	3,416068	1,12302350E-8	0,383614515	0,384				
	8	1,7	2,108956	5,234217	3,814655	3,416068	3,52689856E-8	0,561040035	0,561				
	9	1,8	2,108956	5,234217	3,814655	3,416068	1,10763329E-7	0,820027938	0,820				
	10	1,9	2,108956	5,234217	3,814655	3,416068	3,47853748E-7	1,19750503	1,198 🗸				
<									>				
v1¤	TPFch	em¤ ¤											
v2¤	a¤	Ω											
v3¤	bα	a											
v4¤	c¤	Ω											
v5¤	dα	Ω											
v6¤	Derivat	ion_1 ¹ =((v4	4*(v3-v2))*	(2,718281	828^((-v4)*(v1-v5))))/(((2,718281828^((-v4*2)*(v1-v5))+1))/	²)α				
	Destinat		4*(v4*(v3-)	(2))*(2:718	3281828^((-v4)*(v1-v	(5))))/(((2;71828182	8^((-v4)*(v1-v5)))+1)^2))·				
V/P	Derivat	10n_21+(2*\	4*(v4*(v4	*(v3-v2))*	2;718281	828^((-v4*	2)*(v1-v5))))/(((2;71	8281828^((-v4)*(v1	-v5)))+1)^3)).a				
v8¤	Curvat	ure¤ =(v7/	/((1+(v6^2))^(3/2)))¤	1								

Рисунок 1.39 – Интерфейс программы LogCurv и формулы, используемые для вычисления кривизны логистической функции

В отличие от процедуры стандартного нелинейного оценивания, моделирование при помощи алгоритма eHOF обычно не вызывает каких-либо затруднений, а единственным

задаваемым параметром в таких уравнениях является коэффициент M: для встречаемости он равен единице, для плотности поселения и биомассы – их максимальным значениям. Пример данных, подготовленных в ПП Ехсеl для выполнения еНОF моделирования, представлен на рисунке 1.41. Для достижения «одновершинности» кривых отклика Mможно увеличить, подбирая его величину экспериментально; алгоритм еНОF моделирования в среде R вынесен в Приложение A 2. После завершения этой процедуры останется лишь сопоставить полученные характеристики еНОF моделей (координаты точек оптимумов, субоптимумов таксономических групп и более низких систематических единиц макрозообентоса) и стандартных (ПДУ₁₀, *ERL*_q, *ERM*_q и *ERD*_q) функций.

	ЯЧЕЙКА	(= X 🗸	f _x =(B29-B30)/0.1		E55 🗸 🦳 🎜	
	A	В	С		A	В
18	TPF _{chem}	Значение функции	Приращение	27	TPF _{chem}	Значение функции
19	2.6	2.912	0.198	28	3.5	2 29
20	2.7	2.884	0.279	20	3.6	2.25
21	2.8	2.845	0.390	29	5.0	2.20
22	2.9	2.791	0.541		координата 10 % снижения	2.17
23	3.0	2.717	0.739	30	функции – 3.7	
24	3.1	2.618	0.989	31	3.8	2.04
25	3.2	2.489	1.290	32	3.9	1.83
26	3.3	2.327	1.627	33	4.0	1.56
27	3.4	2.130	1.965	34	4.1	1.29
28	3.5	1.905	2.254	35	42	1 07
29	3.6	1.661	2.438	36	13	0.03
30	3.7	1.413	=(B29-B30)/0.1	27	4.4	0.55
31	3.8	1.178	2.355	37	4.4	0.00
32	3.9	0.967	2.108	38	4.5	0.80
33	4.0	0.788	1.786	39	4.6	0.78
34	4.1	0.644	1.444	40	4.7	0.77
35	4.2	0.532	1.123	41	4.8	0.77
36	4.3	0.447	0.848	42	4.9	0.76
37	4.4	0.384	0.626	43	5.0	0.76
38	4.5	0.339	0.455	44	5.1	0.76
39	4.6	0.306	0.326	45	Максимум	2.32
40	4.7	0.283	0.232	40	Миникаума	0.78
41	4.8	0.267	0.164	40		0.10
42	4.9	0.255	0.115	4/	10%	0.15
43	5.0	0.247	0.081		значение функции в точке	2.17
44	5.1	0.241	0.057	48	10 % снижения	

Рисунок 1.40 – Определение приращения функции и координаты точки ее 10 % снижения в программе Excel (соответственно слева и справа)

1.6.5. Рекомендации для доказательства полученной величины ПДУ

Для такого доказательства необходима обширная информация, указанная в начале данного раздела. Если же такие данные имеются, логичной выглядит следующая последовательность операций:

1. Построение моделей и получение соответствующих функций состояния экологических типов сообществ (ФСЭТС) для всех имеющихся биотических параметров;

	Α	В	С	D	Е	F	G	Η		J	K	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	۷	W	Х
1	Point	TPF _{chem}	Actiniaria	Amphipoda	Ascidia	Asteroidea	Bivalvia	Cirripedia	Cumacea	Decapoda	Echinoidea	Echiurida	Gastropoda	Holothuroidea	Hydrozoa	Isopoda	Mysida	Nemertea	Ophiuroidea	Phoronida	Polychaeta	Priapulida	Sipuncula	Solenogastres
2	93-10P	1.0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
3	93-13P	1.0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0
4	93-144P	1.0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	0
5	96-5T	1.0	0	1	0	0	1	0	1	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0
6	92-12SR	1.2	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	0
7	92-14SR	1.2	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	1	0	1	0	0	0
8	92-15SR	1.2	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	1	0	0	0
9	92-2SR	1.2	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
10	92-6SR	1.2	0	0	0	1	1	0	1	1	0	0	1	0	0	0	0	1	1	0	1	0	0	0
11	93-102P	1.2	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	1	0	1	0	0	0
12	93-116P	1.2	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0
13	93-122P	1.2	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	1	0	0	0
14	93-15P	1.2	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	0	0
15	93-17P	1.2	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
16	93-36P	1.2	0	0	0	0	1	0	0	0	1	0	1	1	0	0	1	0	1	0	1	0	0	0
17	93-4P	1.4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0
18	93-61P	1.4	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	0	0
19	93-62P	1.4	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0
20	93-81P	1.4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
21	93-98P	1.4	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0

Группы, в которые добавлены дополнительные значения количественных параметров, выделены синим

Рисунок 1.41 – Пример данных в формате Excel: фрагмент скорректированной видовой матрицы (встречаемость), подготовленной для вычислений кривых отклика при помощи алгоритма еНОГ моделирования

- 2. Стандартизация полученных ФСЭТС (например, преобразование в проценты или стандартизация значений) и, если требуется, инверсия и выбраковка моделей;
- Получение обобщенной функции состояния (ОФС) донного населения, ее доверительных границ, кривизны и приращения;
- 4. Определение искомых величин ПДУ₁₀, ERL_q , ERM_q и ERD_q ;
- 5. Анализ ретроспективных видовых списков и определение величины *TPF*_{chem} в интактный период;
- 6. Анализ императивных факторов;
- 7. Анализ любой другой имеющейся информации, важной в контексте исследования;
- 8. Сопоставление с результатами, полученными на втором этапе.

Итогом выполнения процедур, указанных в пунктах 1–4, должна быть схема, подобная таковой, представленной на рисунке 1.33. Практическое применение полученных величин $\Pi ДУ_{10}$, ERL_q , ERM_q и ERD_q – результаты картирования прибрежных акваторий Владивостока и в заливе Находка – представлены в разделе 1.5 (см. рисунок 1.5–1.32).

2 Результаты применения различных аут- и синэкологических индексов и параметров макрозообентоса в мониторинговых исследованиях

Выявление факторов стрессогенного воздействия и обеспечение принятия решений и мер по сохранению чистоты, здорового состояния и жизнеспособности океана, требует применения эффективных методов мониторинга, позволяющих оперативно получать наглядные и легко интерпретируемые результаты. В этом отношении контроль биотических параметров является приоритетным, поскольку он обеспечивает прямую оценку состояния водных экосистем [41, 42]. За рубежом существует множество индикаторов и критериев, упрощающих эту процедуру [43–45]. Однако их использование в морях РФ затруднено различиями видового состава, отсутствием данных о принадлежности видов к экологическим группам и т.п.

2.1 Современное состояние, актуальность, цели и задачи исследования

В процессе выполнения работ по проекту 4.6 «Развитие моделей, методов и технологий мониторинга гидрохимического состояния и загрязнения морей России и оценки гидрологического и гидрохимического состояния морей и морских устьев рек»^{*} в 2020–2023 гг. был адаптирован и разработан ряд методов, позволяющих заметно упростить получение итоговых результатов мониторинга морской среды.

Аутэкологическое направление. На основе анализа международной базы данных, экспертных оценок и еНОF моделирования были установлены экологические группы по отношению к эвтрофикации (содержанию органического углерода – C_{opr} – в грунтах) у 488 из 528 найденных представителей донной фауны зал. Петра Великого, включая всех доминантов и субдоминантов [37]. Это позволило адаптировать для этой акватории индексы *AMBI* и *M-AMBI*, широко используемые в ЕС для оценки состояния морской среды, анализа ее экологического статуса и его эволюции во времени [46–48]. Данные индексы существенно упрощают мониторинг морских и эстуарных водоемов; их величины и, соответственно, состояние среды и биоты, могут быть легко и наглядно объяснены при наличии соответствующей геоэкологической информации [37].

При помощи eHOF моделирования и алгоритма нечеткой ординации создана классификация донных животных (191 вид) по отношению к общему уровню химического загрязнения осадков (индекс TPF_{chem}) и, на ее основе, разработан биоиндикационный метод определения степени загрязнения (индекс TPF_{bio}) [29, 30]. Этот метод позволяет восстанавливать последовательность изменений в силе антропогенного воздействия в

^{*} Раздел 4.6.2 – Совершенствование методических основ мониторинга состояния морской среды; раздел 4.6.3 – Экспериментальная разработка и экспедиционная проверка современных методов исследования состояния и уровня загрязнения морской среды для внедрения на сети мониторинга.

периоды, когда анализ содержания загрязняющих веществ (3В) еще не производили; корректировать уровень химического загрязнения; изучать процессы аккумуляции 3В в самой прибрежной части моря, где анализ загрязнения не был выполнен по объективным причинам. Индекс TPF_{bio} эффективнее *AMBI* и *M-AMBI* в 2,1 и 3,1 раза при индикации общего уровня загрязнения грунтов и в 1,6 раза – содержания C_{opr} [13].

Проверка возможности применения в практике экологического мониторинга общих характеристик наиболее представительных таксономических групп макрозообентоса показала, что в настоящее время единственным приемлемым вариантом их использования является определение пороговых величин ERL_q , ERM_q и ERD_q [38]. Две первые точки ограничивают область прогрессивной деградации донного населения – почти линейного падения моделей изменения индексов видового богатства и разнообразия вдоль градиента TPF_{chem} (снижение в среднем соответственно на 25 и 70 %), последняя – является координатой выхода этих кривых на плато, и дают возможность картирования акваторий, что удобно при интерпретации результатов геоэкологических наблюдений.

Синэкологическое направление. Разработан алгоритм, дающий возможность легко и оперативно выделять сообщества донных животных, получать статистические подтверждения справедливости полученной классификации, а также выявлять основные факторы среды, ведущие к их дифференциации [49]. Применение этого алгоритма позволило описать на акватории зал. Петра Великого 34 бентосных группировки, определить их количественные показатели и, в конечном итоге, получить математическую модель перехода сообществ от биологически сбалансированного к физически контролируемому состоянию [50–52]. Эта зависимость описывается *S*-образной кривой с точками начала и окончания линейного роста, приуроченными к значениям показателя экологического стресса ($\Pi \exists C$) в 15 и 36 %; эти значения следует считать критическими уровнями состояния сообществ макрозообентоса [53].

Процедура классификации, основанная на теории нечетких множеств, позволила выделить шесть экологических типов сообществ макрозообентоса. Тип BB объединяет биологически сбалансированные, а тип PC – физически контролируемые агломерации (biologically balanced и physically controlled) [14]. Между ними располагаются SD, MD, D и HD группировки, включающие ассоциации с разной степенью дисбаланса – от легкого до сильного (slightly, medium, heavily и disbalanced). Сообщества SD развиваются в результате кратковременного экстремального воздействия одного из императивных факторов и должны рассматриваться как поврежденные, разрушенные или нестабильные. На основе модели перехода и классификации сообществ макрозообентоса разработан метод оценки экологического состояния донной фауны.

63

Перечисленные выше методики позволили разработать метод определения ПДУ для общего уровня химического загрязнения грунтов (*TPF*_{chem}) на основе структурных изменений макрозообентоса. Показано, что для залива Петра Великого ПДУ составляет 2,0-2,1 единиц *TPF*_{chem} и отражает 10-% снижение обобщенной функции экологического состояния сообществ донных животных (ПДУ₁₀, начало устойчивого падения модели, первый максимум ее кривизны) [1]. Это подтверждается результатами анализа ретроспективных данных, фоновых наблюдений и изменениями состава императивных факторов на фоне роста загрязнения морской среды. Как и ПДК, ПДУ следует дифференцировать: для акваторий, предназначенных для донного культивирования беспозвоночных, он должен быть жестче, чем, например, для водоемов культурнобытового использования.

Таким образом, анализ макрозообентоса современными методами открывает широкие возможности для оценки качества морской среды. По сравнению со стандартными подходами, применение новых для морей РФ критериев и индикаторов позволяет получать объективную и наглядную информацию о состоянии исследуемой акватории, о его вариациях во времени и прогнозировать изменения экологического статуса водных объектов. Адаптированные и новые методы (индексы *AMBI, M-AMBI, TPF*_{chem}, *TPF*_{bio}, алгоритм для выделения группировок, методы оценки экологического состояния донной фауны и определения ПДУ), после верификации, следует рекомендовать для экологического мониторинга различных акваторий морей РФ и применения на сети станций ОГСН.

Цель работы – апробация адаптированных и разработанных методов и подходов к анализу состояния морской среды с позиций биоиндикации на основе использования макрозообентоса. Для ее достижения необходимо решить четыре основные задачи:

 Систематизировать и/или реструктурировать гео-, аут- и синэкологические данные, полученные в результате выполнения НИР 4.6.2 и 4.6.3 в 2020–2023 гг., и таковые других исследований;

 Вычислить различные аут- и синэкологические индексы и параметры, характеризующие экологическое состояние морской среды и донного населения;

 Выбрать на основе ранее выполненных исследований наиболее эффективные биотические индексы, характеризующие экологическое состояние морской среды и макрозообентоса, и на этой основе оценить состояние морской среды на различных акваториях морей РФ;

 Разработать схему и рекомендации применения наиболее эффективных индексов при экологическом мониторинге.

64

2.2 Материалы и методы

2.2.1 Использованные материалы, отбор и обработка проб

Материалом для анализа послужили результаты съемок ФГБУ «ДВНИГМИ» (2021–2022 гг.) в заливе Петра Великого на прибрежной акватории Владивостока (рисунок 2.1, приложение таблица Б.1). Кроме того, использованы данные экспедиционных исследований в Белом море (Двинский, кандалакшский и Онежский заливы), у побережья острова Сахалин (Венинский полигон, районы платформ Лун-А, ПА-А и ПА-Б, включая станции по углам лицензионной площади) (рисунок 2.2–2.5, приложение таблица Б.1).

Пробы грунта отбирали дночерпателем Ван-Вина (у побережья Владивостока и в Белом море – 0,11 м², 1–4 пробы; у острова Сахалин – 0,25 м², 4 пробы); на каждой станции часть верхнего слоя осадков (2–3 см) одной из проб замораживали для последующего измерения концентраций ЗВ, содержание $C_{\rm opr}$ и гранулометрического анализа. Для биологического анализа грунт промывали на сите с ячеей 1 мм и фиксировали макробентос 4 % буферным раствором формальдегида.

Концентрации загрязняющих веществ в донных отложениях измеряли в лаборатории мониторинга загрязнения морских вод ФГБУ «Приморское УГМС» и ФГБУ НПО «Тайфун» по стандартным методикам Росгидромета [16]. Содержание C_{opr} анализировали методом окисления смесью K₂Cr₂O₇ – H₂SO₄ с колориметрическим окончанием в ННЦМБ «ИБМ ДВО РАН» [54, 55]. Гранулометрический состав определяли комбинацией ситового метода и метода A-22 в ФГБУН «ТОИ ДВО РАН» [56, 57]. Таксономическая принадлежность макрозообентоса установлена сотрудниками ФГБУ «ДВНИГМИ» и ННЦМБ «ИБМ ДВО РАН». Животных, определенных до вида или более высокого таксономического ранга, подсчитывали и взвешивали с точностью до 0,01 г после обсушивания на фильтровальной бумаге. С целью определения плотности поселения и биомассы (соответственно *A* и *B*, экз./м² и г/м²) полученные данные пересчитывали на 1 м² площади дна.

2.2.2 Анализ данных

Общий уровень загрязнения характеризовали индексом:

$$TPF_{chem} = (YB + \Phi E + Pb + Cu + \Sigma \Pi \Pi) / 5$$
(2.1)

где УВ, ФЕ, Рb, Сu и ΣДДТ – 5-ранговые оценки (*ln*-масштаб) содержания углеводородов, фенолов, свинца, меди, суммы ДДТ и его метаболитов [1, 17]. Вычисление *TPF*_{chem} производили при помощи программы TpfCalc, разработанной одним из авторов в среде STATISTICA [18].

Рисунок 2.1 – Расположение станций отбора проб макрозообентоса на прибрежной акватории Владивостока в 2021–2022 гг.

Рисунок 2.2 – Расположение станций отбора проб макрозообентоса в заливах Белого моря

Рисунок 2.3 – Расположение станций отбора проб макрозообентоса на Венинском полигоне

Рисунок 2.4 – Расположение станций отбора проб макрозообентоса у газонефтедобывающих платформ на прибрежной акватории о-ва Сахалин

Рисунок 2.5 – Расположение станций отбора проб макрозообентоса на участках размещения отходов бурения у нефтедобывающих платформ, исследованных на прибрежной акватории о-ва Сахалин

Для количественной характеристики макрозообентоса использовали биомассу и плотность поселения. Кроме того, вычисляли индексы видового богатства Маргалефа (*R* в наиболее простом его виде — как число таксонов в пробе, и *SR* — как отношение *R* к сумме квадратов долей видов от общей плотности), разнообразия Шеннона-Винера, выравненности Пиелу и доминирования Симпсона (*H*', *e* и *Si*). Для описания размерного состава применяли *W*-статистику Кларка. Эти показатели подсчитывали по формулам:

$$H' = -\sum (p_i \times (\log_2 p_i))$$
 (2.2)

$$e=H/log_2R \tag{2.3}$$

$$SR = (R-1)/log_2 A$$
 (2.4)

$$Si = \sum (p_i/A)^2 \tag{2.4}$$

$$W = \sum_{i=1}^{R} (B_i - A_i) / [50 \times (R - 1)]$$
(2.5)

где *p_i* – доля вида *i* от общей плотности. Вычисления перечисленных биотических характеристик выполняли при помощи ППП PRIMER 5.0.

Для сравнения использовали индекс *TPF*_{bio}, разработанный авторами в процессе выполнения НИР в 2021 г., который «настроен» на определение степени химического загрязнения донных отложений [29, 30]:

$$TPF_{bio} = \left(\sum (Opt_i)\right) / R \tag{2.6}$$

где *Opt*_i – усредненная координата оптимума по *TPF*_{chem} для групповой встречаемости и плотности каждого таксона.

Кроме того, в работе использован биотический полихето-амфиподный индекс *ВОРА*, вычисляемый на основе плотности амфипод и оппортунистических видов полихет по формуле [58]:

$$BOPA = \log_{10} \left(\left(\frac{fp}{fa} + 1 \right) + 1 \right)$$
 (2.7)

где *fp* – частота встречаемости оппортунистических полихет, т.е. отношение числа оппортунистических полихет к общему числу особей в выборке; *fa* – частота встречаемости амфипод, т.е. отношение числа амфипод к общему числу особей в выборке. Два члена «+1» в уравнении необходимы для выполнения операции деления и логарифмического преобразования, если *fp* или *fa* равны нулю.

Для характеристики экологического состояния макрозообентоса использовали индексы *AMBI* (AZTI Marine Biotic Index) и *M-AMBI* [46–48]. Первый определяется по сумме удельных плотностей пяти групп видов, по-разному относящихся к содержанию органического углерода:

$$AMBI = [(0 \times \$GI) + (1, 5 \times \$GII) + (3 \times \$GIII) + (4, 5 \times \$GIV) + (6 \times \$GV)]/100 \quad (2.8)$$

где GI–GV – группы видов. Необходимый для расчёта *AMBI* список видов и таксонов более высокого ранга залива Петра Великого, расклассифицированных по указанным группам, опубликован авторами ранее [37]. Второй индекс, *M-AMBI* или *Multivariate AMBI*, вычисляется на основе процедуры факторного анализа с использованием индексов *AMBI*, *R* и *H*' [48]. Пороговые величины индексов *AMBI* и *M-AMBI* суммированы в таблице 2.1. Систематизированные биологические и геоэкологические данные приведены в приложении (таблица В.1–В.12).

Таблица 2.1 – Классификация состояния, статуса донного населения и нарушений его местообитаний на основе индексов AMBI и M-AMBI (по [48], добавлены градации M-AMBI из [59])

Градации <i>АМВІ</i>	Доминирующая экологическая группа	Состояние донного сообщества	Классификация нарушений (повреждений) местообитания	Экологический статус EcoQ (sensu WFD)	Градации <i>M-AMBI</i>
$0,0 < AMBI \le 0,2$	ES	Нормальное	Houspymanuaa	Pulookuŭ opotvo	> 0.77
$0,2 < AMBI \le 1,2$	ES	Вырождающееся	Пенарушенное	Бысокий статус	>0,77
$1,2 < AMBI \leq 3,3$	Т	Несбалансированное	Слегка нарушенное	Хороший статус	> 0,53–0,77
$3,3 < AMBI \leq 4,3$	OD1 OD2	Переходное к загрязненному	Vycanowie yenyweryce	Умеренный статус	> 0,39–0,53
$4,3 < AMBI \leq 5,0$	OF I=OF 2	Загрязненное	умеренно нарушенное		> 0.20, 0.30
$5,0 < AMBI \le 5,5$	OP2	Переходное к сильно загрязненному		Обедненный статус	> 0,20-0,39
$5,5 < AMBI \le 6,0$	OF 2	Сильно загрязненное	Сильно нарушенное	Плохой ототио	< 0.20
$6,0 < AMBI \le 7,0$	Биота отсутствует	Биота отсутствует	Экстремально нарушенное		$\leq 0,20$

Примечание. EcoQ — Ecological Quality (экологическое качество), WFD — Water Framework Directive (Рамочная директива по водным ресурсам); OP1 и OP2 — оппортунисты I и II порядка, Т — толерантные, ES — экстремально чувствительные.

2.2.3 Статистический анализ

При статистической обработке применяли процедуры и тесты, предлагаемые пакетами прикладных программ PRIMER, STATISTICA и средой R [19-22]. Выделение сообществ осуществляли при помощи алгоритма [49], который включает разведочную группировку станций (процедуры кластерного анализа и бутстрепинга); классификацию станций, не классифицированных на первом этапе (нечеткие множества); статистическую оценку принадлежности станций к той или иной группе (процедура ANOSIM); оценку статистической значимости связи обилия видов с факторами среды и географическим положением (тест Мантеля). Наименование сообществ производили по видам с наибольшим вкладом во внутригрупповое сходство (процедура SIMPER). Общие параметры выделенных группировок сравнивали при помощи тестов Крускала-Уоллиса и Манна-Уитни, выявляли императивные факторы среды (канонический анализ соответствий, ССА) и по необходимости визуализировали дифференциацию сообществ и косных (нелинейное шкалирование, NMDS). В воздействий отличие от классического дисперсионного анализа (ANOVA) и корреляционного анализа, основанных на методе наименьших квадратов, что позволяет определить коэффициент детерминации — долю общей дисперсии, объясняемой тем или иным фактором и их суммой, — ССА использует метод максимального правдоподобия. Поэтому судить о «силе влияния» переменных можно только по величинам критерия согласия и расчетной величине критерия Фишера (χ^2 и*F*).

2.3 Эффективность биотических индексов при оценке уровня загрязнения и эвтрофикации и схема анализа качества морской среды

Очевидно, что для биоиндикации наилучшим показателем следует считать тот, который имеет наибольший и существенный (> 50 %) вклад индицируемого фактора в общую объясняемую дисперсию (*TEV*) на фоне минимального «шума», создаваемого остальными предикторами или сторонними факторами [13]. Единственным параметром, полностью удовлетворяющим этим требованиям, является *TPF*_{bio} (вклад ковариаты в *TEV* – почти 73 %, остальных факторов – в сумме < 5 % или примерно 94 и 6 % от *TEV*, рисунок 2.6). В какой-то мере, этот показатель может рассматриваться и как индикатор уровня эвтрофикации (содержания C_{opr}), хотя и в меньшей степени. Заметный, но все же не исключительный, вклад ковариаты C_{opr} в его дисперсию (45,7 % – 80,5 % от *TEV*) ощутимо отягощен статистически значимыми воздействиями факторов «тип грунта» и «глубина» (в сумме 11,0 % или 19,3 % от *TEV*).

Интегральные биотические индексы AMBI и M-AMBI в меньшей степени

71

соответствуют указанным требованиям, существенно уступая TPF_{bio} в TEV, тогда как вклады сторонних факторов в их изменчивость гораздо выше, что особенно заметно для ковариаты содержание C_{opr} (рисунок 2.6). Доля дисперсии, объясненной непрерывными переменными, у этих показателей составляет всего 34,9 и 23,5 % при ковариате TPF_{chem} (меньше чем у TPF_{bio} в 2,1 и 3,1 раза, в процентах от TEV - 76,9 и 53,6) и 28,4 и 29,2 % для содержания C_{opr} (в 1,6 раза, 71,0 и 65,4 %). При этом суммарные эффекты сторонних факторов достигают у *AMBI* 23,1 и 29,0 % от *TEV* (ковариаты TPF_{chem} и содержание C_{opr} , соответственно), а у *M-AMBI* – еще больше – 46,4 и 34,6 %.

Рисунок 2.6 – Вклад различных факторов среды в общую объясненную дисперсию биотических параметров для ковариат *TPF*_{chem} и *C*_{opr} (слева и справа, соответственно) по: [13]

Индекс *ВОРА* в большей степени сопоставим с *AMBI* и *M-AMBI*, чем с *TPF*_{bio}: на ковариату *TPF*_{chem} у него приходится 31,9 %, а на C_{opr} – 40,1 % (в 2,3 и 1,1 раза, 76,6 и 80,4 %, 23,4 и 19,6 %). Следует подчеркнуть, что в индикативных способностях содержания C_{opr} *BOPA* явно превосходит *AMBI* и *M-AMBI*, сближаясь в этом отношении с *TPF*_{bio}, и таким образом, этот показатель весьма перспективен для мониторинга и биоиндикации качества морской среды. Однако его адаптация к акватории зал. Петра Великого требует дополнительных исследований. Во-первых, известны, как минимум, три способа его вычисления, и во-вторых, не совсем ясно, какие виды полихет должны быть использованы при его определении (например, одни лишь экстремально толерантные или же все оппортунистические представители этой группы). В третьих, не понятно, следует ли включать все виды амфипод или, все-таки, исключить из этого списка толерантных представителей этой группы донных животных, основываясь на результатах eHOF моделирования. Так или иначе, использование индекса *BOPA* будет возможно только после дополнительных исследований с целью его адаптации для акватории зал. Петра Великого.

Заметно хуже в отношении применимости для экологического мониторинга выглядят параметры, описывающие богатство, разнообразие и доминирование — индексы *R*, *SR*, *H*' и *Si* (рисунок 2.6). Суммарный вклад сторонних факторов в *TEV* варьирует у них
в пределах 44,8–68,6 % при ковариате TPF_{chem} и от 33,3 до 58,6 % для содержания C_{opr} ; наилучший результат – минимальный процент от TEV – в обоих случаях показывает *Si*, наихудший – *R* и *H*' (соответственно для TPF_{chem} и C_{opr}). Наконец, совсем бесполезным, с позиций статистики, выглядит применение характеристик обилия – плотности и биомассы, а также индекса Пиелу и, что удивительно, статистики Кларка, которая была создана для оценки состояния макрозообентоса. Естественно, прежде всего, это обусловлено крайне низкой суммарной объясненной дисперсией (10,7–18,9 %), тогда как вклад ковариат, например у *W* и *e*, заметно превышает 50 % (TPF_{chem} — соответственно 85,6 и 78,1 % от *TEV*). При ковариате C_{opr} непрерывная переменная сохраняет относительно высокий процент *TEV* у индекса Пиелу, тогда как у *W*-статистики он резко падает и становится статистически незначимым (соответственно 54,0 и 15,0 %).

Кроме указанных выше индексов, полезным является показатель экологического стресса, получаемый на основе синэкологических данных – математической модели перехода сообществ донных животных от «биологически сбалансированного» к «физически контролируемому» состоянию [52–53]. Нелинейность этой зависимости (логистическая функция) дает возможность установления граничных критериев или критических уровней состояния сообществ макрозообентоса (степени повреждения местообитания или состояния среды). Первый из них ($\Pi \partial C = 15$ %) следует считать «заданным значением» (target value), то есть уровнем, к которому необходимо стремиться, чтобы восстановить функциональные свойства осадков для жизни животных, второй ($\Pi \partial C = 36$ %) – «значением коррекции» (intervention value) – уровнем, когда такие свойства сильно снижены, представляют опасность и требуют вмешательства со стороны человека.

Основой оценки состояния сообществ донных животных является ИХ классификация на экологические типы (см. раздел 2.1), выполненная по двум параметрам - средней объясненной дисперсии и ПЭС (рисунок 2.7, таблица 2.2). Для разграничения биологически сбалансированных и разрушенных сообществ дополнительно используется статистика Кларка, которая явно лучше «работает» на синэкологическом, чем на аутэкологическом уровне (рисунок 2.8). Ее резкое снижение у разрушенных когда (нестабильных) сообществ объясняется началом сукцессии, акватория, подвергнувшаяся экстремальному (разрушающему) воздействию, заселяется вновь, что естественно ведет к снижению размеров животных.

Другой вариант снижения W-статистики объясняется результатами наблюдений М. Литтлера с соавторами [60], которые показали, что в биотопах с высокой подвижностью донных отложений выживают и используют их в качестве временной или постоянной экологической ниши две функциональные группы видов: толеранты и оппортунисты. К

73

первым относятся малоподвижные животные, выживающие за счет высокой репродуктивности, а также физиологических и поведенческих адаптаций – полихеты, хитоны, актинии. Ко вторым – подвижные животные, способные активно избегать периодического засыпания путем миграций в защищенные места – гастроподы и

I и II – критические уровни ($\Pi \Im C_{amx} = 15$ и 36 %, *CERL* и *CERM*)

Рисунок 2.7 – Шкала для определения состояния сообществ макрозообентоса на основе показателя экологического стресса, по [14]

Таблица 2.2 – Экологические типы сообществ макрозообентоса и степень нарушения их местообитаний, по [14]

ПЭС _{атх} , % (MEV, %)	Экологические типы сообществ	Биотоп (местообитание)
≤15 (<70 %)	Биологически сбалансированные или почти сбалансированные	Неповрежденный
≤15 (77–87 %)	Разрушенные или нестабильные	Нестабильный
15,1–17,7 (83–89 %)	Умеренно разбалансированные	Умеренно поврежденный
17,8–22,0 (86–91 %)	Разбалансированные	Поврежденный
22,1–35,0 (92–96 %)	Сильно разбалансированные	Сильно поврежденный
>35,0 (95–98 %)	Физически контролируемые	Экстремально поврежденный

некоторые ракообразные. Экспериментальное подтверждение этого явления было получено автором [61] на основе изучения свойств придонной физической среды (движение воды, процессы осаждения-взмучивания вещества, гранулометрический состав донных отложений, их подвижность и проницаемость) и донного населения (видовой состав и количественные характеристики). Очевидно, что такие биотопы и сообщества следует характеризовать как нестабильные.

BB, SD, MD, HD, D и PC – соответственно биологически сбалансированные, разрушенные, умеренно и сильно разбалансированные, разбалансированные и физически контролируемые сообщества макрозообентоса

Рисунок 2.8 – Изменения статистики Кларка при переходе от биологически сбалансированного к физически контролируемому состоянию, по [14]

Таким образом, наиболее важным показателем уровня загрязнения и эвтрофикации является индекс TPF_{bio} , но его применение в настоящий момент ограничено заливом Петра Великого, так как для остальных акваторий, рассматриваемых в настоящем Отчете, не существует классификации донных животных по отношению к загрязнению. Так же весьма полезными являются индексы *AMBI* и *M-AMBI*, поскольку они более универсальны – список животных, расклассифицированных по отношению к содержанию C_{opr} и включенных в международную базу данных, превышает десять тысяч видов. Универсальными показателями являются также *ПЭС* и статистика Кларка. Следовательно, для анализа экологического состояния и степени повреждения донного населения необходимо и достаточно применение всего пяти интегральных характеристик – индексов *TPF*_{bio} (по возможности), *AMBI* и *M-AMBI*, *ПЭС* и W-статистики.

2.4 Экологическое состояние исследованных акваторий

Ниже рассматривается экологическое состояние и качество морской среды прибрежной акватории Владивостока, Двинского, Кандалакшского и Онежского заливов Белого моря, Венинского полигона и районов нефтегазодобывающих платформ ПА-А, ПА-Б и Лун-А (прибрежье острова Сахалин, Охотское море).

2.4.1 Прибрежная акватория Владивостока

Аутэкологические наблюдения. На большинстве исследованных станций в составе донного населения преобладают или, по крайней мере, более чем заметны толерантные по отношению к загрязнению и эвтрофикации, а также оппортунисты первого и второго порядка; при этом уровень загрязнения превышает пороговое значение *ERM*_q (рисунок 2.9). Это свидетельствует о сильном влиянии загрязнения и эвтрофикации на видовой состав донного населения. Следует подчеркнуть очень высокий процент успешной классификации донных животных по экологическим группам: нерасклассифицированные животные присутствовали лишь в двух из 27 проб, и их доля не превышала 1 % (приложение таблица В.13).

В то же время, на большинстве станций макрозообентос имеет хороший, а на трех – даже высокий статус. Скорее всего, в этом проявляется «работа» концепции метаболического прогресса [62], согласно которой слабое и умеренное повышение трофности (не экстремальное, как, например, в бухте Золотой Рог) влечет за собой увеличение интенсивности метаболизма – метаболический прогресс, сопровождающийся экологическим прогрессом – увеличением числа видов, усложнением межвидовых отношений и пространственной структуры. Какие-либо усреднения, например, для сравнения исследованных акваторий пролива Босфор Восточный, Амурского и Уссурийского заливов бессмысленны, так как «географическое» деление почти в точности повторяет синэкологическое (см. далее).

Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные пробы могут быть объединены в три сообщества (приложение таблица Г.1, Г.2, рисунок 2.10):

I. Многощетинковых червей Scoletoma longifolia + Maldane sarsi;

II. Офиур и полихет Ophiura sarsii vadicola + Glycinde armigera;

III. Офиур и двустворчатых моллюсков Ophiura sarsii vadicola + Ennucula tenuis.

Сообщество S. longifolia + M. sarsi приурочено к исследованной акватории Амурского залива, O. sarsii vadicola + G. armigera – главным образом, в проливе Босфор восточный, O. sarsii vadicola + E. tenuis – в Уссурийском заливе. Полученные ординации

Экологические группы: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.9 – Постанционное распределение экологических характеристик макрозообентоса и морской среды на прибрежной акватории Владивостока

Римские цифры – выделенные сообщества

Рисунок 2.10 – Ординация проб алгоритмом нечеткой классификации по плотности видов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 27,64 % изменчивости точек) и распределение выделенных сообществ на исследованной акватории

подтверждаются результатами процедуры ANOSIM (приложение таблица Г.3). Следует подчеркнуть, что обе пробы, взятые на станции *U100* в 2021 г. попали в сообщество пролива, а в 2022 г. – в группировку Уссурийского залива.

В соответствии со средними величинами AMBI биотопы всех выделенных ассоциаций нарушены в легкой степени, варьируя от интактного состояния у группировки O. sarsii vadicola + G. armigera до умеренного – у S. longifolia + M. sarsi (таблица 2.3). Все сообщества имеют в среднем хороший экологический статус, но у S. longifolia + M. sarsi он изменяется от обедненного до хорошего, у O. sarsii vadicola + G. armigera – от умеренного до высокого, а у O. sarsii vadicola + E. tenuis – от хорошего до высокого. Наиболее сильно загрязнены биотопы группировки O. sarsii vadicola + G. armigera, в наименьшей – S. longifolia + M. sarsi. Сообщества S. longifolia + M. sarsi и O. sarsii vadicola + G. armigera, целена, изменьшей – S. longifolia + M. sarsi. Сообщества S. longifolia + M. sarsi и O. sarsii vadicola + G. armigera, в наименьшей – S. longifolia + M. sarsi. Сообщества S. longifolia + M. sarsi и O. sarsii vadicola + G. armigera, в наименьшей – S. longifolia + M. sarsi. Сообщества S. longifolia + M. sarsi и O. sarsii vadicola (сукцессии), а O. sarsii vadicola + E. tenuis – как сильно разбалансированное.

	Сообщество			
Параметр	I. S. longifolia + M.	II. O. sarsii vadicola	III. O. sarsii	
	sarsi	+ G. armigera	vadicola + E. tenuis	
Munovo AMDI	$2,81\pm0,90$	$2,09\pm0,76$	2,57±0,37	
индекс АМЫ	1,62–4,22	0,81–3,27	2,14–3,20	
	0,564±0,127	<u>0,671±0,100</u>	<u>0,747±0,064</u>	
индекс <i>М-АМБ</i>	0,380–0,700	0,500–0,810	0,670–0,850	
Munovo TDE	<u>2,89±0,26</u>	<u>3,13±0,27</u>	<u>2,72±0,23</u>	
ИНДЕКС IPF _{bio}	2,40-3,22	2,59–3,44	2,47–3,06	
Показатель экологического стресса, ПЭС	13,1	9,6	25,8	
Creative Kreater W	$0,048 \pm 0,084$	0,022±0,072	<u>0,139±0,161</u>	
Статистика кларка, и	-0,120-0,152	-0,102–0,136	0,022–0,441	

Таблица 2.3 – Статистические характеристики использованных параметров у выделенных сообществ макрозообентоса

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Виды – позитивные индикаторы эвтрофикации и загрязнения (оппортунисты I и II порядка, экстремально толерантные и толерантные животные) присутствуют во всех выделенных сообществах, исключение – *O. sarsii vadicola* + *E. tenuis*, где нет оппортунистов второго порядка (рисунок 2.11). В этой группировке доминируют индифферентные по отношению эвтрофикации представители макрозообентоса на фоне самого высокого вклада экстремально чувствительных к загрязнению и стенобионтных видов. В сообществах *S. longifolia* + *M. sarsi* и *O. sarsii vadicola* + *G. armigera* отчетливо

преобладают эврибионтные формы; в первом из них доля толерантных и экстремально толерантных к загрязнению видов достигает почти 50 % (оппортунистов обоих порядков превышает четверть), а во втором – роль позитивных индикаторов загрязнения и эвтрофикации заметно ниже. Описанный экологический состав выделенных группировок характерен для разрушенного и разбалансированного типов сообществ [14].

a: ES, IN, T, OP1 и OP2 – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка; б: ES, S, MT, T и ET – экстремально чувствительные, чувствительные, умеренно толерантные, толерантные и экстремально толерантные виды; в: S, SE и E – стено-, стено-эври- и эврибионтные виды

Рисунок 2.11 – Экологический состав выделенных сообществ

Дифференциация сообществ макрозообентоса на исследованной акватории определяется, прежде всего, уровнем химического загрязнения, эвтрофикации и особенностями придонного гидрологического режима, который во многом обусловлен интенсивностью терригенного стока (таблица 2.4) [35, 51]. Немаловажную роль играет и гранулометрический состав грунта, но параметры TPF_{chem} или C_{opr} входят в состав всех моделей. Некоторые характеристики среды в местах обитания выделенных сообществ представлены в таблице 2.5.

Таблица 2.4 – Результаты канонического анализа соответствий для биомассы и плотности поселения донных животных: ANOVA для полных моделей, моделей с сокращенным числом параметров и статистической оценкой их термов по отдельности и значимость осей (число перестановок – 999) по [35, 51]

Параметр	Df	χ^2	F	$\Pr(>F)$		
Общая модель (2001 г.): Корень 4 степени из $A \sim \Gamma$ лубина + $Me_2F + C_{opr}$						
Модель	3	1,090	1,952	0,001		
Остатки	29	5,397				
	Кра	евые эффекты (тиг	I III)			
Глубина	1	0,371	1,995	0,001		
MeF_2	1	0,329	1,765	0,001		
Сорг	1	0,304	1,633	0,004		
Остатки	20	5,397				
		Оси				
CCA1	1	0,442	2,377	0,001		
CCA2	1	0,359	1,930	0,001		
CCA3	1	0,288	1,549	0,003		
Остатки	20	5,397				
Общая моде	ль (2005 г.): Корен	ь 4 степени из <i>A</i> ~	Глубина + $C_{\text{орг.}}$ + L	$Mean + GrF_2$		
Модель	4	1,467	2,399	0,001		
Остатки	20	3,057				
	Кра	евые эффекты (тиг	I III)			
Глубина	1	0,359	2,347	0,001		
C _{opr.}	1	0,380	2,487	0,001		
Mean	1	0,421	2,757	0,001		
GrF_2	1	0,297	1,941	0,010		
Остатки	20	3,057				
		Оси				
CCA1	1	0,540	3,535	0,001		
CCA2	1	0,414	2,707	0,001		
CCA3	1	0,268	1,751	0,032		
CCA4	1	0,245	1,603	0,024		
Остатки	20	3,057				
Общая модель (2006–2007 гг.): Корень 4 степени из <i>В</i> ~ Глубина + <i>TPF</i> _{chem} + <i>GrL</i> ₁ + <i>GrL</i> ₃ +						
PoF_1						
Модель	9	4,213	1,841	0,002		
Остатки	20	5,086				
Краевые эффекты (тип III)						
Глубина	1	0.552	2.130	0.007		
TPF _{chem}	1	0.769	2.967	0.001		

Продолжение таблицы 2.4

Параметр	Df	χ^2	F	Pr(> <i>F</i>)	
GrL_1	1	0,480	1,853	0,058	
GrL ₃	1	0,616 2,376		0,002	
PoF_1	1	0,493	1,904	0,030	
Остатки	24	6,218			
		Оси			
CCA1	1	0,934	3,606	0,035	
CCA2	1	0,738	2,850	0,001	
CCA3	1	0,661	2,552	0,002	
CCA4	1	0,520	2,006	0,006	
Остатки	24	6,218			
Общая модель (2	016 г.): Корень 4 с	тепени из А или В	~ Глубина + <i>TPF</i> _{che}	$e_{m}/PoF_1+MeF_2+O_2$	
Модель	4	1,495/1,285	1,764/1,917	0,001	
Остатки	25	5,296/4,191			
	Крас	евые эффекты (тиг	I III)		
Глубина	1	0,340/0,267	1,605/1,593	0,002/0,004	
TPF_{chem}/PoF_1	1	0,315/0,307	1,485/1,830	0,016/0,001	
O ₂	1	0,302/0,211	1,423/1,260	0,021/0,065	
MeF_2	1	0,341/0,285	1,608/1,702	0,004/0,002	
Остатки	25	5,296/4,191			
		Оси			
CCA1	1	0,549/0,464	2,590/2,767	0,001	
CCA2	1	0,416/0,392	1,963/2,339	0,001	
CCA3	1	0,272/0,229	1,284/1,369	0,153/0,063	
CCA4	1	0,259/0,200	1,221/1,192	0,071/0,139	
Остатки	25	5,296/4,191			
Общая модель (2018 г.): Корень 4 степени из $A \sim \Gamma$ лубина + $C_{\text{орг}}$					
Модель	2	0,821	1,994	0,001	
Остатки	13	2,675			
Краевые эффекты (тип III)					
Глубина	1	0,480	2,334	0,001	
Сорг	1	0,326	1,586	0,008	
Остатки	13	2,675			
		Оси	Γ		
CCA1	1	0,505	2,456	0,001	
CCA2	1	0,315	1,533	0,003	
Остатки	13	2,675			
Общая модел	іь (2019 г.): Корені	ь 4 степени из <i>А/В</i>	$\sim TPF_{\rm chem} + \Gamma$ луби	$Ha+O_2+GrF_1$	
Модель	4	0,977/0,931	1,972/2,126	0,001	
Остатки	28	3,468/3,064			
Краевые эффекты (тип III)					
<i>TPF</i> _{chem}	1	0,228/0,223	1,837/2,039	0,001	
Глубина	1	0,211/0,176	1,701/1,605	0,001/0,004	
O_2	1	0,193/0,167	1,558/1,530	0,006/0,016	
GrF_1	1	0,203/0,174	1,639/1,590	0,004/0,005	
Остатки	28	3,468/3,064			
		Оси	0.051/0.050	0.001	
CCAI	1	0,378/0,418	3,051/3,823	0,001	
CCA2	1	0,262/0,226	2,114/2,062	0,001	

Продолжение таблицы 2.4

Параметр	Df	χ^2	F	$\Pr(>F)$
CCA3	1	0,185/0,151	1,497/1,381	0,026/0,067
CCA4	1	0,152/0,136	1,225/1,239	0,097/0,090
Остатки	28	3,468/3,064		

Примечание. Над чертой – результаты для биомассы, под чертой – для плотности (A и B); χ^2 – критерий согласия; F – расчетная величина критерия Фишера; Pr – вероятность справедливости H_0 о статистической незначимости модели или включении в нее переменных; CCA1–4 – шкалы (размерности), полученные при помощи канонического анализа соответствий (CCA); PoF₁, MeF₂ и GrF₁ – факторы, получаемые при анализе концентраций загрязняющих веществ и гранулометрических фракций донных отложений методом факторного анализа, GrL – нагрузки гранулометрических факторов, Mean – средний размер зерен [25, 28, 35].

Разрушенное состояние сообщества *S. longifolia* + *M. sarsi* обусловлено действием терригенного стока и летнего снижения содержания O_2 на фоне неблагоприятной обстановки в отношении загрязнения и эвтрофикации. Негативный эффект терригенного стока обусловлен, прежде всего, потоком тонкодисперсной взвеси, которая засоряет фильтрующие аппараты, затрудняя дыхание, питание и другие процессы метаболизма, а то и просто засыпает донных животных. Например, в период паводка в 2018 г. (середина августа) слой наилка достигал 7–8 мм, причем на весьма значительных расстояниях от устьев водотоков, впадающих в северные части Амурского и Уссурийского заливов.

Габлица 2.5 – Некоторые х	арактеристики среды в местах	обитания выделенных сообществ

	Сообщество			
Параметр	I. S. longifolia + M.	II. O. sarsii vadicola	III. O. sarsii vadicola	
	sarsi	+ G. armigera	+ E. tenuis	
	<u>15±4</u>	<u>28±4</u>	<u>19±1</u>	
1 лубина, м	7–21	18–37	18–20	
	$2,4\pm0,2$	$4,5\pm1,1$	<u>1,5±1,2</u>	
Содержание Сорг, МГ/Г	2,1–2,8	2,3–6,9	0,7–2,3	
Munovo TDE	$2,70\pm0,15$	<u>3,46±0,21</u>	<u>3,04±0,12</u>	
ИНДЕКС <i>IPF</i> chem	2,40-3,00	3,20-3,80	2,72–3,68	
Минимальное содержание	<u>3,06±0,51</u>	4,50±0,13	$4,38\pm0,05$	
О2 у дна, мл/л	2,42-4,06	4,35–4,83	4,34–4,41	
Concernation usedures %		<u>5,3±3,3</u>		
Содержание псефитов, 78		0,0–11,7	_	
	<u>9,6±4,6</u>	<u>19,8±6,6</u>	<u>27,7±11,0</u>	
Содержание псаммитов, 78	0,7–16,2	10,3–35,4	19,9–35,4	
Содержание	$90,4\pm4,6$	$74,9\pm6,1$	$72,4\pm11,0$	
алевропелитов, %	83,8–99,3	64,6–86,4	64,6-80,1	

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений, прочерк – фракции отсутствуют.

Дефицит кислорода в придонном слое возникает в основном из-за микробиологического окисления избыточной биомассы диатомей в условиях слабой

динамики вод и при низкой интенсивности фотосинтетически активной радиации [63]. В свою очередь, вспышки численности микроводорослей во многом обусловлены паводковыми сбросами биогенов, а в объемах среднегодового стока р. Раздольной, впадающей в северную часть Амурского залива, с 2003 г. наблюдается отчетливый положительный тренд [27]. Об увеличении поступления биогенных элементов вблизи впадения водотоков, и в частности р. Раздольной свидетельствуют множество наблюдений, например [64]. Другой причиной падения содержания O₂ может быть отсутствие вертикального перемешивания при наличии ярко выраженного сезонного термоклина [65]. Скорее всего, первый механизм снижения концентраций O₂ является основным для исследованной акватории Амурского залива, а второй – в проливе Босфор Восточный.

Пороговая концентрация, ниже которой наступает гипоксия, по мнению Р. Диаса и Р. Розенберга [66], составляет 2 мл/л. Минимальное содержание O_2 у дна в местообитании сообщества *S. longifolia* + *M. sarsi* близка к этому значению (таблица 2.5). Следует учесть, что при взятии проб воды на определение концентраций растворенного кислорода, биогенов и других параметров батометр обычно не опускают ниже, чем метр над дном, а значит, у самого дна содержание O_2 будет еще ниже. Снижения содержания O_2 до уровня гипоксии в местообитании группировки *O. sarsii vadicola* + *G. armigera* в 2021–2022 гг. не отмечено, но такие явления неоднократно наблюдались здесь ранее [35]. В то же время, степень загрязнения ее биотопов превышает таковую у остальных группировок. Вероятно, в ее «разрушении» участвует комплекс факторов.

Сильно разбалансированное состояние сообщества *O. sarsii vadicola* + *E. tenuis* обусловлено совсем иными причинами. В отличие от остальных группировок, оно обитает на осадках со значительной примесью крупных алевритов и мелких псаммитов (почти 40 %) – наиболее подвижных гранулометрических фракций, а уровень загрязнения здесь (после коррекции по *TPF*_{bio}) сопоставим с таковым в проливе Босфор Восточный. Это повышение, с одной стороны, обусловлено бытовыми стоками микрорайона бухта Тихая (станция *U100*), а с другой – просачиванием грунтовых вод, обогащенных 3В, из района свалки в районе бухты Горностай, хотя и закрытой саркофагом еще в 2010 г. (станция *U103*, устное сообщение старшего научного сотрудника ТИГ Е.Н. Черновой). Повидимому, такое специфическое сочетание условий все же дает время донному населению сформировать соответствующую ассоциацию, но сильные экологические градиенты, как это было показано ранее [14], ведут к ее «разбалансировке», т.е. сильной связи индивидуальных показателей обилия с общей плотностью поселения и биомассой.

83

2.4.2 Двинский, Кандалакшский и Онежский заливы Белого моря

Аутэкологические наблюдения. В целом, донное население исследованной акватории находится в интактном и слегка поврежденном состоянии, и лишь в Двинском заливе на трех литоральных станциях (*D0115*, *D0211* и *D0215*) макрозообентос был умеренно нарушен (рисунок 2.12–2.15). При этом значения индекса *AMBI* в Двинском заливе значимо выше, чем в Кандалакшском заливе и незначимо – в Онежском, о чем свидетельствуют результаты теста Манна-Уитни (вероятность справедливости $H_0 p = 0,013$ и 0,113; рисунок 2.12). Среди найденных животных преобладают индифферентные и экстремально чувствительные к загрязнению и эвтрофикации представители донной фауны, но в Двинском и, особенно, Онежском заливе велика и доля толерантных организмов, причем в первом из них заметную роль играют и оппортунисты первого порядка (рисунок 2.13). Пространственное распределение индекса *AMBI* отражает увеличение степени повреждения донного населения и мест его обитания вблизи портов Кандалакша, Онега и, особенно, Архангельска (рисунок 2.14).

1–3 – соответственно Двинский, Кандалакшский и Онежский заливы; *mean* – среднее значение; *SE* – ошибка репрезентативности
Рисунок 2.12 – Диаграммы размаха некоторых экологических индексов:

Процент успешной классификации донных животных по экологическим группам, в большинстве случаев был весьма высок, хотя и заметно ниже, чем для прибрежья Владивостока: нерасклассифицированные животные присутствовали на десяти из 84 станций, причем на восьми из них доля этих представителей макрозообентоса была невелика (0,3–3,8 %; приложение таблица В.14). На одной из станций, опробованных в Двинском заливе, она составила 18,2 % и еще на одной этой же акватории – превысила 50 %, но результаты вычисления индексов *AMBI* и *M-AMBI* соответствовали таковым станций этого района и, поэтому, эти значения не были выбракованы при последующих усреднениях.

Рисунок 2.13 – Степень нарушения биотопов, экологический состав и статус макрозообентоса: I – III – соответственно экстремально чувствительные, индифферентные и устойчивые к загрязнению и эвтрофикации представители донной фауны, IV – оппортунисты второго порядка

Наиболее неблагополучным в отношении экологического статуса (индекс *M*-*AMBI*), как и по индексу *AMBI*, является Двинский залив, причем значения *M*-*AMBI* здесь значимо ниже, чем в Кандалакшском заливе и незначимо – в Онежском (результаты теста Манна-Уитни: p = 0,034 и 0,310; рисунок 2.12). Во всех заливах преобладают станции, где донное население имеет хороший статус, в Кандалакшском и Двинском заливах отсутствуют станции с высоким статусом макрозообентоса, а в Онежском и Двинском заливах довольно высока доля станций с его обедненным статусом (рисунок 2.13). Пространственное распределение *M*-*AMBI* во многом аналогично таковому у индекса *AMBI*: по крайней мере, это касается ухудшению состояния бентоса вблизи портов Кандалакша, Онега и, особенно, Архангельска (рисунок 2.14).

Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные станции могут быть объединены в четыре сообщества (приложение таблица Г.2, Г.4, рисунок 2.16):

I. Полихет и двустворчатых моллюсков Lagis koreni + Yoldia hyperborea (Двинский залив – станции D0113, D0115, D0116, D0211, D0215, D0216, D0616, D1016, D1116, D1216, D1416, Кандалакшский залив – K2614p, K2615, K2616, Онежский залив – 01110, 01210, 01215, 01216, 01313, 01810);

Рисунок 2.14 – Распределение значений индексов *AMBI* и *M-AMBI* на исследованной акватории Белого моря

- II. Двустворчатых моллюсков Portlandia arctica + Nuculana pernula (Двинский залив D0316, D0415, D0416, D0516, D1316, D1516, D1616, D1716, D1816, D1916, Кандалакшский залив K2116, K2215, K2216, K2316, K2415r, K2416, K2613, K2613g);
- III. Брюхоногих моллюсков Peringia ulvae (Двинский залив D1y111, D1y13o, D1y13v, D1y14l, D1y14o, D1y14v, D1y15l, D1y15o, D1y15v, D1y16l, D1y16o, D1y16v, D2y11l, Онежский залив O0115s, O0116k, O0116p, O0215s, O0216k, O0216p, O0315s, O0316k, O0316p, O0415s, O0416p, D0013, D0313);
- IV. Двустворчатых моллюсков Nuculana pernula + Astarte elliptica (Кандалакшский залив K2314b, K2315, K2515, K2516, Онежский залив – O0116s, O0515s, O1116, O1315, O1316, O1415, O1416, O1515, O1516, O1610, O1613, O1616, O1710, O1713, O1813, O1910).

Сообщество L. koreni + Y. hyperborea обнаружено во всех трех исследованных заливах, P. arctica + N. pernula – только в Двинском и Кандалакшском заливах, P. ulvae – в Двинском и Онежском, N. pernula + A. elliptica – в Кандалакшском и Онежском. Полученные ординации подтверждаются результатами процедуры ANOSIM и теста Мантеля (приложение таблица Г.3, Г.5). Поскольку определяющее и статистически значимое влияние на обилие видов макрозообентоса оказывает сумма факторов среды, группировка станций обусловлена экологически и, следовательно, выделенные агломерации в соответствии с определением действительно являются сообществами. На обособление этих ассоциаций значимо действует и пространственная локализация, что объясняется заметной связью матриц факторов среды и расположения станций в пространстве (приложение таблица Г.5).

Следует отметить, что переход от одной агломерации в другую происходит довольно плавно (главным образом, сообщества I, II и IV), о чем свидетельствует заметная

Экологические группы: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка; I–IV – выделенные сообщества

Рисунок 2.15 – Постанционное распределение экологических характеристик макрозообентоса на исследованной акватории Белого моря

Римские цифры – выделенные сообщества, вверху – все станции, внизу – только станции групп I, II и IV

Рисунок 2.16 – Ординация станций алгоритмом нечеткой классификации по биомассе таксонов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 22,9 и 17.8 % изменчивости точек)

доля станций с повышенными значениями степени принадлежности к «чужим» кластерам, что явно отражает расположение этих точек опробования в областях экотонов (приложение таблица Г.4). Для сообществ I и II это станции D1216, D1316, D0415, K2216, K2615, K2616, O1210, O1215, O0116s, K2315, для I и IV – K2615, K2215, O1215, O1313, для II и IV – K2215, K2616, K2315. Не исключено, что это связано и с межгодовой изменчивостью площадей, занимаемых сообществами, как это наблюдается на

прибрежной акватории Владивостока в заливе Петра Великого [14].

Основным параметром, определяющим дифференциацию вылеленных группировок, является тип грунта (по степени заиления), чье влияние статистически значимо на весьма высоком уровне (*p* = 0,001 как для плотности поселения, так и биомассы; таблица 2.6, рисунок 2.17). Также значимо и влияние глубины (р = 0,035 и 0,043). Следовательно, развитие сообществ определяется «классической» для морского макрозообентоса схемой и отражается в зональности их распределения на исследованных акваториях (рисунок 2.18). Литоральное сообщество *P. ulvae*, приуроченное к песчаным грунтам, с увеличением глубины и ростом степени заиления сменяется группировкой L. koreni + Y. hyperborea, за ним следует N. pernula + A. elliptica, затем – L. koreni + Y. hyperborea. Естественно, этот порядок нарушается из-за мозаичного распределения грунтов разного типа, в результате чего диапазоны глубин у выделенных ассоциаций заметно перекрываются (таблица 2.7).

Таблица 2.6 – Результаты канонического анализа соответствий (ССА) для биомассы и плотности поселения донных животных: дисперсионный анализ (ANOVA) для полных моделей, моделей с сокращенным числом параметров и статистической оценкой их термов по отдельности и значимость осей (число перестановок – 999)

Параметр	Df	χ^2	F	Pr(>F)		
Общая модель: корень 4 степени из плотности поселения ~ Глубина + Тип грунта						
Модель	2	0,593	2,173	0,001		
Остатки	81	11,057				
	Кра	евые эффекты (ти	п III)			
Глубина	1	0,200	1,462	0,035		
Тип грунта	1	0,285	2,085	0,001		
Остатки	81	11,057				
		Оси				
CCA1	1	0,422	3,092	0,001		
CCA2	1	0,171	1,253	0,097		
Остатки	81	11,057				
Общая	модель: корень 4 с	тепени из биомас	сы ~ Глубина + Ти	ип грунта		
Модель	2	0,617	2,186	0,001		
Остатки	81	11,438				
	Кра	евые эффекты (ти	п III)			
Глубина	1	0,203	1,439	0,043		
Тип грунта	1	0,292	2,071	0,001		
Остатки	81	11,438				
		Оси				
CCA1	1	0,447	3,953	0,001		
CCA2	1	0,171	1,208	0,132		
Остатки	81	11,438				

Примечание. χ^2 – критерий согласия; *F* – расчетная величина критерия Фишера; *Pr* – вероятность справедливости *H*₀ о статистической незначимости модели или включении в нее переменных; *CCA1*–2 – шкалы (размерности), полученные при помощи *CCA*.

Сообщество	Глубина, м	Преобладающий тип грунта
I. L. koreni + Y. hyperborea	$\frac{24,2\pm4,8}{8,0-70,0}$	Илисто-песчаный, илистый, илисто- глинистый и глинистый
II. P. arctica + N. pernula	$\frac{101,3\pm13,9}{39,0-225,0}$	Илисто-глинистый и глинистый
III. P. ulvae	Литораль, 0,1 м	Песчаный
IV. N. pernula + A. elliptica	<u>32,8±5,9</u> 8,0–110,0	Песчаный и илисто-песчаный

Таблица 2.7 – Параметры среды и сообщества макрозообентоса

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменчивости.

I–IV – выделенные сообщества; стрелки – градиенты факторов; пунктирные линии – оси координат

Рисунок 2.18 – Распределение сообществ макрозообентоса (римские цифры) на исследованной акватории Белого моря и их экологический состав

Виды-оппортунисты второго порядка отсутствовали во всех выделенных сообществах (рисунок 2.18). Оппортунисты первого порядка вносили заметный вклад

только в видовой состав сообщества L. koreni + Y. hyperborea, в группировке P. arctica + N. pernula их число было почти в пять раз меньше, а в ассоциации N. pernula + A. elliptica они присутствовали лишь в следовых количествах. Это свидетельствует об относительно сильном влиянии загрязнения и эвтрофикации только на сообщество I, чему способствует его пространственная локализация – близость к акваториям портов Кандалакша, Онега и, особенно, Архангельска, и приуроченность к илистым и глинистым грунтам, что обеспечивает накопление широкого спектра загрязняющих веществ и органического сравнению прибрежьем Владивостока, углерода. Конечно, по с состояние макрозообентоса на исследованных акваториях Белого Моря просто великолепное.

В то же время, значения всех параметров, характеризующих состояние, степень повреждения и экологический статус донного населения показывают, что в наиболее стрессовых условиях находится литоральное сообщество *P. ulvae* (таблица 2.8). Очевидно, здесь проявляется действие иных факторов, характерных для литоральной зоны, причем наиболее «подозрительным» в этом отношении является степень и продолжительность осушения, обусловленного приливо-отливными процессами и сгонно-нагонными явлениями [61].

	Сообщество				
Параметр	I. L. koreni +	II. P. arctica +	III P ulvae	IV. N. pernula	
	Y. hyperborea	N. pernula	III. I . <i>uiva</i> e	+ A. elliptica	
Индекс <i>АМВІ</i>	$\frac{1,71\pm0,25}{0,07-4,14}$	<u>1,14±0,11</u> 0,37–1,83	<u>2,57±0,15</u> 0,00–2,97	<u>0,95±0,13</u> 0,26–2,41	
Индекс М-АМВІ	0,560±0,035 0,231-0,788	$\frac{0,581\pm0,016}{0,475-0,682}$	0,354±0,012 0,270–0,498	<u>0,659±0,037</u> 0,332–0,956	
Показатель экологического стресса, ПЭС	11,1	21,0	23,5	15,5	
Статистика Кларка, W	<u>0,099±0,036</u> -0,256–0,372	<u>0,119±0,031</u> -0,124–0,322	$\frac{-0,042\pm0,046}{-0,421-0,425}$	<u>0,130±0,042</u> -0,370–0,415	

Таблица 2.8 – Статистические характеристики использованных параметров у выделенных сообществ макрозообентоса

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

2.4.3 Венинский полигон

Аутэкологические наблюдения. Позитивные индикаторы эвтрофикации (оппортунисты первого порядка) отмечены на многих станциях, а в точке Ven5 присутствуют и оппортунисты второго порядка (рисунок 2.19). Однако на 20 из 30 опробованных станций отчетливо преобладают экстремально чувствительные животные, на остальных – индифферентные, а вклад толерантных видов сопоставим с последними – лишь на станции *Ven30*. Макрозообентос имел хороший статус на 23 станциях, высокий –

на пяти, а умеренный – на двух. Все это позволяет сделать вывод о благоприятном состоянии среды на исследованном полигоне, но не дает возможности аргументированно описать причины вариаций ее качества. Для этого следует выполнить синэкологический анализ. Процент успешной классификации донных животных по экологическим группам, в большинстве случаев был весьма высок, хотя и несколько ниже, чем для прибрежья Владивостока: нерасклассифицированные животные присутствовали лишь на восьми из 30 станций (0,1–2,2 %; приложение таблица В.15).

Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные станции могут быть отнесены к трем сообществам (приложение таблица Г.1, Г.2, рисунок 2.20):

- I. Кумовых раков и плоских морских ежей Diastylis bidentata + Echinarachnius parma (станции Ven1, Ven2, Ven5, Ven7, Ven13, Ven18, Ven21, Ven24, Ven28, Ven29 и Ven30);
- II. Кумовых раков и амфипод Diastylis bidentata + Ampelisca macrocephala (Ven3, Ven4, Ven8, Ven9, Ven10, Ven26 и Ven27);
- III. Амфипод и мшанок Ampelisca macrocephala + Leieschara subgracilis (Ven11, Ven12, Ven14–Ven17, Ven19, Ven20, Ven22, Ven23 и Ven25).

Полученные ординации подтверждаются результатами процедуры ANOSIM (приложение таблица Г.3). В сообществе *D. bidentata* + *E. parma* заметный вклад вносят

толерантные к эвтрофикации и загрязнению животные, отмечены и оппортунисты первого порядка (рисунок 2.21). В группировках *D. bidentata* + *A. macrocephala* и *A. macrocephala* + *L. subgracilis* указанные экологические группы присутствуют лишь в следовых количествах. В соответствие со средними величинами индекса *AMBI*, наименее поврежденным является сообщество II и его местообитание, у ассоциаций I и III средние значения этого показателя почти идентичны (таблица 2.9, см. также таблицу 2.1). Одновременно, его диапазоны примерно одинаковы у всех трех агломераций и во всех случаях соответствуют ненарушенному и слегка нарушенному состоянию.

Римские цифры – выделенные сообщества

Рисунок 2.20 – Ординация станций алгоритмом нечеткой классификации по плотности поселения таксонов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 27,64 % изменчивости точек) и распределение выделенных сообществ на исследованной акватории

Все выделенные группировки характеризуются, в среднем, хорошим экологическим статусом (индекс *M-AMBI* > 0,53 усл. ед.). У сообщества *D. bidentata* + *E. parma* он варьирует от умеренного до хорошего (таблица 2.9). У *A. macrocephala* + *L. subgracilis* статус изменяется от хорошего до высокого, а у *D. bidentata* + *A. macrocephala* вариации *M-AMBI* не выходят за пределы диапазона хорошего статуса. Сообщества *D. bidentata* + *E. parma* и *A. macrocephala* + *L. subgracilis*, учитывая значения *ПЭС* и статистики Кларка, являются биологически сбалансированными или близки к этому состоянию, а группировку *D. bidentata* + *A. macrocephala* следует отнести к разбалансированному экологическому типу.

Большинство станций, объединенных в сообществе *D. bidentata* + *E. parma*, локализованы вблизи береговой черты на глубинах < 35 м (8 из 12; рисунок 2.20, таблица 2.10). В этом районе побережья острова Сахалин располагается целый ряд населенных пунктов, включая поселок городского типа Ноглики с населением около 10,5 тысяч

человек, кроме того здесь впадает в море множество речек и ручьев, обеспечивающих заметный терригенный сток. Все это ведет к обогащению донных отложений органическим углеродом и загрязняющими веществами, скорее всего продуктами бытовых стоков. К сожалению, данные о концентрациях ЗВ и Сорг в осадках исследуемого района отсутствуют. Так или иначе, такие условия обеспечивают некоторое снижение качества морской среды, появления и пролиферации видов, толерантных к эвтрофикации и загрязнению. В то же время, антропогенное воздействие на исследованную акваторию более весьма локально И, В целом, состояние морской среды здесь чем удовлетворительное, что и отражается в экологическом составе донного населения и значениях экологических индексов.

	Сообщество			
Параметр	I. D. bidentata + E.	II. D. bidentata +	III. A. macrocephala +	
	parma	A. macrocephala	L. subgracilis	
Hunara AMPI	$0,79{\pm}0,15$	$0,18\pm0,15$	$0,77{\pm}0,20$	
	0,01–1,68	0,03–1,68	0,02–1,60	
HARANG M AMDI	<u>0,587±0,016</u>	<u>0,611±0,055</u>	0,729±0,033	
	0,517–0,651	0,559–0,651	0,587–0,907	
Показатель экологического стресса, ПЭС	9,0	19,3	5,9	
Статистика Кларка, W	<u>0,231±0,049</u> -0,130–0,402	$\frac{-0,034\pm0,047}{-0,099-0,402}$	<u>0,090±0,053</u> -0,140–0,318	

Таблица 2.9 – Статистические характеристики использованных параметров у выделенных сообществ макрозообентоса

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

	Сообщество			
Параметр	I. D. bidentata + E.	II. D. bidentata + A.	III. A. macrocephala	
	parma	macrocephala	+ L. subgracilis	
	<u>50,3±14,2</u>	<u>36,3±3,2</u>	<u>120,9±26,8</u>	
1 лубина, м	17,0–170,0	27,0–48,0	60,0–340,0	
Caranyanua Haaduran 9/	$20,8\pm6,5$	<u>10,1±10,7</u>	<u>6,3±1,6</u>	
Содержание псефитов, 76	0,0–63,6	0,0–69,7	0,1–14,9	
Содержание псаммитов,	74,1±6,7	$78,4\pm9,0$	<u>83,5±2,6</u>	
%	31,4–94,6	30,2–96,2	67,7–95,1	
Содержание	<u>4,8±1,4</u>	<u>11,6±3,3</u>	<u>10,3±3,2</u>	
алевропелитов, %	0,1–15,1	0,1–22,8	0,7–32,2	

Таблица 2.10 – Некоторые характеристики среды в местах обитания выделенных сообществ

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Разбалансированное сообщество D. bidentata + A. macrocephala располагается между двумя другими, причем приурочено к глубинам, промежуточным по отношению к большинству станций группировок D. bidentata + E. parma и A. macrocephala + L. subgracilis (рисунок 2.20, таблица 2.10). Более того, оно располагается на грунтах, характеризующихся отчетливо «промежуточным» гранулометрическим составом относительно содержания псефитов и псаммитов (фракции соответственно > 1 мм и 1–0,1 мм), а его титульные виды, вносящие основной вклад в сходство выделенных ассоциаций, присутствуют в названиях группировок I и III. Все это позволяет сделать парадоксальный вывод, что эта группировка объединяет станции экотона между двумя основными сообществами, что в свою очередь дает предпосылки более глубокого теоретического анализа экологических типов сообществ, что не входит в цель и задачи настоящего исследования.

2.4.4 Луньское месторождение – район платформы Лун-А

Аутэкологические наблюдения. Позитивные индикаторы эвтрофикации (оппортунисты первого порядка) отмечены на 11 станциях, а оппортунисты второго порядка отсутствовали (рисунок 2.22). На станциях основного полигона (*E250, E500, S500, SW250, SW500* и *SW1000*) доля оппортунистов первого порядка варьировала в пределах 0,1–0,3 %, тогда как на контрольных станциях и в северных точках опробования лицензионной площади (*REF1–3, NE* и *NW*) их вклад был заметно выше и составлял в среднем 0,5 % (0,2–1,2 %). В целом, экстремально чувствительные животные преобладали на 15 станциях, а на остальных доминировали индифферентные виды. Макрозообентос имел хороший статус на 13 станциях, а высокий – на десяти. Все это позволяет сделать

вывод о весьма благоприятном состоянии среды на исследованном полигоне, но не дает возможности аргументированно описать причины вариаций ее качества. Доля животных, успешно расклассифицированных по экологическим группам, была весьма высока, хотя и несколько ниже, чем для прибрежья Владивостока: нерасклассифицированные животные присутствовали на 11 из 23 станций с превышением 1 % лишь на одной из них (0,1–0,5 и 1,2 %; приложение таблица В.15).

Экологические группы: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.22 – Постанционное распределение экологических характеристик макрозообентоса у платформы Лун-А

При оценке влияния нефтегазодобывающих платформ на качество морской среды традиционно используют крестообразную схему с усреднениями различных параметров по радиусам с увеличением расстояния от точки установки платформ. Парадоксально, но такое усреднение показывает, что в наилучшем состоянии находится макрозообентос (и морская среда) внутри контрольного створа (125–250 м от платформы), где отчетливо доминируют экстремально чувствительные виды, а индекс *AMBI* принимает наименьшие значения (рисунок 2.23). Затем, на расстоянии 500–1000 м величина этого показателя увеличивается в разы (но его величины соответствуют, в среднем, ненарушенному состоянию), а в составе донного населения преобладают индифферентные животные. В тоже время на всех расстояниях от платформы макрозообентос имеет хороший экологический статус.

Еще дальше, на контрольных станциях и в угловых точках лицензионной площади (10 км и более) индекс *AMBI* принимает промежуточные значения, а величины *M-AMBI* свидетельствуют о высоком статусе макрозообентоса. В отличие от основного полигона, здесь нет отчетливого доминирования тех или иных форм, вклад экстремально чувствительных и индифферентных видов примерно одинаков и, кроме того, роль толерантных животных и оппортунистов первого порядка становится заметной, хотя и на следовом уровне (рисунок 2.23). Объяснить такие необычные вариации экологического состава, состояния и статуса донного населения поможет синэкологический анализ.

Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные станции могут быть отнесены к трем сообществам (приложение таблица Г.1, Г.2, рисунок 2.24):

- I. Амфипод и актиний Protomedeia epimerata + Epiactis arctica (E125, N125, E500, N500, S500, SW500, E1000, N1000, S1000 и SW1000);
- II. Кумовых раков Diastylis bidentata (SE, S125, SW125, E250, N250, S250, SW250 и SW);
- III. Кумовых раков и плоских морских ежей Diastylis bidentata + Echinarachnius parma (REF1-3, NW и NE).

Римские цифры – выделенные сообщества Рисунок 2.24 – Ординация станций алгоритмом нечеткой классификации по плотности поселения таксонов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 29,76 % изменчивости точек) и распределение выделенных сообществ на исследованной акватории (внемасштабная схема)

Полученные ординации подтверждаются результатами процедуры ANOSIM (приложение таблица Г.3). Распределение сообществ І *P. epimerata* + *E. arctica* и III *D. bidentata* носит мозаичных характер, хотя большинство станций, вошедших в первую группировку, располагается все же на больших расстояниях, чем второй, у которой их большинство сосредоточено в пределах контрольного створа (рисунок 2.24). Ассоциация II *D. bidentata* + *E. parma* локализована на севере исследованной акватории, на расстоянии 10 км и более от платформы. В сообществе *P. epimerata* + *E. arctica* преобладают индифферентные к загрязнению и эвтрофикации виды, в группировке *D. bidentata* – экстремально чувствительные, в *D. bidentata* + *E. parma* вклад этих форм примерно одинаков, но в следовых количествах представлены толерантные животные и оппортунисты первого порядка. В сообщество II и его местообитание, у ассоциаций I и III

средние значения этого показателя почти идентичны, а его диапазоны примерно равны у всех трех агломераций и соответствуют ненарушенному и слегка нарушенному состоянию (таблица 2.11, см. также таблицу 2.1).

Группировка *P. epimerata* + *E. arctica* характеризуется, в среднем, хорошим экологическим статусом, а *D. bidentata* и *D. bidentata* + *E. parma* – высоким (индекс *M*-*AMBI* > 0,53 и 0,77 усл. ед., соответственно) (таблица 2.11). У *P. epimerata* + *E. arctica* и *D. bidentata* статус изменяется от хорошего до высокого, а у *D. bidentata* + *E. parma* вариации *M-AMBI* не выходят за пределы диапазона высокого статуса. В то же время, учитывая значения $\Pi \ni C$ и статистики Кларка, сообщества *P. epimerata* + *E. arctica* и II. *D. bidentata*, являются разрушенными, а группировку *D. bidentata* + *E. parma* следует отнести к разбалансированному экологическому типу. Последнее свидетельствует, что платформа, исходя из локализации сообществ, оказывает весьма существенное, и даже жесткое воздействие на донное население окружающей ее акватории, причем это влияние явно не связано с загрязнением – наибольшие концентрации углеводородов отмечены вдали от нее (таблица 2.12).

Выделенные группировки обитают примерно в одном и том же диапазоне глубин, *P. epimerata* + *E. arctica* приурочено к почти чисто песчаным осадкам, в местообитаниях *D. bidentata* – заметен вклад гравийных и галечных фракций, а у *D. bidentata* + *E. parma* – илистых (таблица 2.12). Последнее, собственно, и ведет к повышению содержания углеводородов и, как следствие, – к росту роли толерантных и оппортунистических видов, хотя и не существенному.

Таблица 2.11 – Статистические характеристики использованных параметров у выделенных сообществ макрозообентоса

	Сообщество		
Параметр	I. P. epimerata +	II. D. bidentata	III. D. bidentata +
	E. arctica		E. parma
Индекс <i>АМВІ</i>	<u>0,90±0,14</u> 0,01–1,35	$\underline{0,30\pm0,10}$ 0,11–0,90	$\frac{0,83\pm0,06}{0,67-0,99}$
Индекс М-АМВІ	$\frac{0,696\pm0,025}{0,557-0,822}$	<u>0,793±0,023</u> 0,714–0,876	<u>0,813±0,013</u> 0,794–0,851
Показатель экологического стресса, ПЭС	7,3	13,4	18,3
Статистика Кларка, W	<u>-0,040±0,017</u> -0,126–0,020	<u>-0,055±0,015</u> -0,1070,001	<u>0,220±0,031</u> 0,145–0,291

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Таблица 2.12 – Некоторые характеристики среды в местах обитания выделенных сообществ

	Сообщество			
Параметр	I. P. epimerata + E.	II. D. bidentata	III. <i>D. bidentata</i> + <i>E</i> .	
	arctica		parma	
Глубина, м	<u>50,7±1,2</u>	45,3±3,1	<u>49,2±3,6</u>	
	47,3-60,8	32,7-50,8	37,7–57,8	
Содержание псефитов,	<u>0,5±0,2</u>	$11,4\pm7,0$	<u>2,3±1,6</u>	
%	0,1–2,2	0,3–43,6	0,0–7,5	
Содержание	<u>97,4±0,3</u>	<u>87,1±6,9</u>	<u>94,3±1,5</u>	
псаммитов, %	95,7–98,5	54,7–98,4	89,8–97,0	
Содержание	<u>2,0±0,1</u>	<u>1,5±0,3</u>	<u>4,4±1,2</u>	
алевропелитов, %	1,5–2,8	0,4–2,5	2,6–7,9	
Общие углеводороды,	<u>1,8±0,3</u>	<u>2,4±0,5</u>	<u>4,3±2,9</u>	
мкг/г	0,9–3,1	0,8–4,0	1,2–14,6	

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Характерной чертой исследуемого района является исключительно высокая интенсивность гидро- и литодинамических процессов, обуславливающая значительную естественную изменчивость среды, как во времени, так и в пространстве [67, 68]. При этом существует два уровня литодинамического режима: штормовой и спокойный, формируемый приливно-отливными и стационарными течениями. Но даже в спокойной обстановке транзит осадочного материала происходит почти по всему исследованному участку. В этих условиях переносятся, прежде всего, осадки, сложенные мелкими и средними песками, которые приходят в движение при относительно небольших скоростях течения и, соответственно, небольших касательных напряжениях [69]. В штормовых ситуациях эти осадки подвергаются еще более интенсивной переработке, вплоть до перехода во взвесь. Высокая гидро- и литодинамическая активность района отражается, в

частности, в почти полной идентичности фракционного состава проб разной глубины отбора: переработке подвергается не только самый поверхностный слой осадков, но и подстилающие его грунты. Другое их отражение – практически полное отсутствие тонких частиц, для которых исследуемый район является областью транзита [68].

Как было показано в разделе 2.3, в биотопах с высокой подвижностью донных отложений выживают и используют их в качестве временной или постоянной экологической ниши две функциональные группы видов: толеранты и оппортунисты. К первым относятся малоподвижные животные, выживающие за счет высокой репродуктивности, а также физиологических и поведенческих адаптаций – полихеты, хитоны, актинии. Ко вторым – подвижные животные, способные активно избегать периодического засыпания путем миграций в защищенные места – гастроподы и некоторые ракообразные.

Район, исследованный вокруг платформы Лун-А, может служить хорошим примером таких биотопов: из-за нестабильности донных отложений здесь преобладают именно толеранты и оппортунисты (по терминологии М. Литтлера). Виды *P. epimerata* и D. bidentata относятся к ракообразным (амфиподы и кумовые раки), а E. arctica – актиния. В сообществе P. epimerata + E. arctica средняя плотность поселения первого вида превышает 1,6 тысячи экземпляров на квадратный метр (+ D. bidentata – почти 2,5 тысячи), а в группировке D. bidentata плотность титульного вида достигает почти 4,6 тысячи (приложение таблица Г.2). Это и объясняет значительное падение средних величин статистики Кларка у этих ассоциаций макрозообентоса, а сами сообщества следует рассматривать как разрушенные или нестабильные. В то же время, следует признать, что термины «разрушенный» и «нестабильный» не совсем удачны – данные группировки обитают на этой акватории многие тысячелетия и все это время находятся в таком состоянии. Сообщество D. bidentata + E. parma обитает в более спокойной гидродинамической обстановке (что отражает большее содержание алевропелитов), но все же испытывает те же воздействия и не достигает биологически сбалансированного состояния. Следует также подчеркнуть, что выбор расположения контрольных станций явно не удачен, гранулометрический состав грунтов здесь явно иной, чем у платформы, а должен быть идентичным.

2.4.5 Пильтун-Астохское месторождения – район платформы ПА-А (Моликпак)

Аутэкологические наблюдения. Позитивные индикаторы эвтрофикации (оппортунисты первого порядка) отмечены на многих станциях, а в точке W500 присутствуют и оппортунисты второго порядка (рисунок 2.26). Однако на 11 из 23 опробованных станций отчетливо преобладают экстремально чувствительные животные, на остальных – индифферентные. Вклад толерантных видов невелик на всех станциях. Макрозообентос имел хороший статус на 15 станциях, а высокий – на восьми. Все это позволяет сделать вывод о благоприятном состоянии среды на исследованном полигоне, но не дает возможности аргументированно описать причины вариаций ее качества. Доля животных, успешно расклассифицированных по экологическим группам, была весьма высока, хотя и ниже, чем для прибрежья Владивостока: нерасклассифицированные животные присутствовали на 13 из 23 станций с превышением 1 % на пяти из них (0,1-1,0 и 1,3–3,0 %; приложение таблица В.15).

Экологические группы: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.26 – Постанционное распределение экологических характеристик макрозообентоса у платформы Моликпак

Усреднение параметров по радиусам с увеличением расстояния от точки установки платформ показывает ее отчетливое влияние на донное население этой акватории (рисунок 2.27). Толерантные виды в заметных количествах присутствуют только вокруг платформы, с увеличением расстояния от нее снижается доля индифферентных видов и возрастает вклад экстремально чувствительных животных, достигая максимума на контрольных станциях. Кроме того, в этом же направлении отчетливо уменьшаются средние значения индекса *AMBI* с минимумом на контрольных станциях (степень повреждения изменяется от слегка нарушенного до ненарушенного). В тоже время, на всех расстояниях от платформы макрозообентос имеет хороший экологический статус, а на контрольных станциях и в угловых точках лицензионной площади – высокий.

REF – контрольные станции, LA – лицензионная площадь, I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка

Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные станции могут быть отнесены к трем сообществам (приложение таблица Г.1, Г.2, рисунок 2.28):

- I. Плоских морских ежей и двустворчатых моллюсков Echinarachnius parma + Ophelia limacina (E125, E250, E500, S500, E1000, S1000 и REF2);
- II. Амфипод и полихет Ischyrocerus sp. + Ampharete crassiseta (N125, S125, W125, N250, S250, W250, N500, N1000 и NW2);
- III. Плоских морских ежей и кумовых раков Echinarachnius parma + Diastylis bidentata (W500, W1000, REF1, REF3, SW1, NE3 и SE4).

Римские цифры – выделенные сообщества Рисунок 2.28 – Ординация станций алгоритмом нечеткой классификации по плотности поселения таксонов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 45,09 % изменчивости точек) и распределение выделенных сообществ на исследованной акватории (внемасштабная схема)

Полученные ординации подтверждаются результатами процедуры ANOSIM (приложение таблица Г.З). Распределение сообществ I *E. parma* + *O. limacina*, II *Ischyrocerus* sp. + *A. crassiseta* и III *E. parma* + *D. bidentata* носит, в целом, как и у платформы Лун-А, мозаичных характер, хотя все станции, вошедшие в первую группировку, сосредоточены в юго-восточном секторе полигона, а второй – в северозападном (рисунок 2.28). В сообществах *E. parma* + *O. limacina* и *E. parma* + *D. bidentata* преобладают экстремально чувствительные к загрязнению и эвтрофикации виды, а в группировке *Ischyrocerus* sp. + *A. crassiseta* доминируют индифферентные представители макрозообентоса (рисунок 2.29). Толерантные животные в незначительных количествах.

В соответствие со средними величинами индекса *AMBI*, наименее поврежденным является группировка III и ее местообитание, наиболее – ассоциация II. У всех трех агломераций изменение этого параметра соответствует вариациям экологического состояния от ненарушенного до слегка нарушенного (таблица 2.13, см. также таблицу 2.1).

Группировки *E. parma* + *O. limacina* и *Ischyrocerus* sp. + *A. crassiseta* характеризуются, в среднем, хорошим экологическим статусом, а сообщество *E. parma* + *D. bidentata* – высоким (индекс *M-AMBI* > 0,53 и 0,77 усл. ед.); у всех ассоциаций *M-AMBI* изменяется от хорошего до высокого. Сообщество *E. parma* + *O. limacina*, учитывая значения Π *ЭС* и статистики Кларка, является разбалансированным, *E. parma* + *D. bidentata* – сильно разбалансированным, а группировку *Ischyrocerus* sp. + *A. crassiseta* следует отнести к разрушенному экологическому типу. Все это свидетельствует, что платформа, исходя из локализации сообществ, оказывает весьма существенное воздействие на донное население окружающей ее акватории, причем это влияние вряд ли связано с загрязнением – концентрации углеводородов в пределах всех трех сообществ невелики и в разы ниже пороговой величины *ERL* (10–100 мкг/г) (таблица 2.14).

Легенда: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.29 – Экологический состав выделенных сообществ

Выделенные группировки обитают примерно в одном и том же диапазоне глубин, сообщества *E. parma* + *O. limacina* и *Ischyrocerus* sp. + *A. crassiseta* приурочены к песчаным грунтам с большой примесью гравийно-галечных фракций (доля алевропелитов в первом случае несколько выше, а песков – ниже), а в местообитаниях *E. parma* + *D. bidentata* преобладают почти чисто песчаные осадки (таблица 2.14). В последнем случае донные отложения почти идентичны осадкам в пределах сообщества *D. bidentata*, выделенного в районе платформы Лун-А, в двух других – явно отличаются значительной долей псефитов.

	Сообщество		
Параметр	I. E. parma + O.	II. Ischyrocerus sp. +	III. E. parma + D.
	limacina	A. crassiseta	bidentata
Индекс АМВІ	<u>0,70±0,19</u>	$1,42\pm0,05$	<u>0,43±0,17</u>
	0,28–1,54	1,08–1,57	0,08–1,24
Индекс М-АМВІ	<u>0,758±0,011</u>	<u>0,717±0,024</u>	$0,788\pm0,022$
	0,725-0,809	0,621–0,824	0,722–0,866
Показатель экологического стресса, ПЭС	21,7	8,3	23,6
Статистика Кларка, W	<u>0,308±0,019</u>	<u>0,031±0,023</u>	<u>0,196±0,042</u>
	0,241-0,363	-0,066-0,127	0,023-0,291

Таблица 2.13 – Статистические характеристики использованных параметров у выделенных сообществ макрозообентоса

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Таблица 2.14 – Некоторые характеристики среды в местах обитания выделенных сообществ

Параметр	I. <i>E. parma</i> + <i>O</i> .	II. Ischyrocerus sp. +	III. $E. parma + D.$
	limacina	A. crassiseta	bidentata
Глубина, м	<u>28,5±0,9</u>	<u>31,3±0,6</u>	<u>36,2±5,3</u>
	23,7-30,2	27,6–32,7	24,7–53,5
Содержание псефитов, %	<u>36,6±12,6</u>	<u>31,5±9,7</u>	<u>13,3±9,3</u>
	2,5-69,9	0,1-87,7	0,3–53,1
Содержание псаммитов, %	<u>62,3±13,0</u>	<u>67,8±9,9</u>	<u>85,9±9,3</u>
	30,0–97,5	11,1–99,7	46,3–99,5
Содержание	$1,1\pm0,7$	<u>0,7±0,3</u>	<u>0,8±0,3</u>
алевропелитов, %	0,0–4,5	0,1–1,7	0,2–2,2
Общие углеводороды,	$1,1\pm0,2$	$1,6\pm0,5$	$1,5\pm0,5$
мкг/г	0,5–1,8	0,6–4,2	0,5–3,0

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Так или иначе, выделенные сообщества, как и у платформы Лун-А, обитают в условиях исключительно высокой интенсивности гидро- и литодинамических процессов, обуславливающих значительную естественную изменчивость среды, как во времени, так и в пространстве. Поэтому, вариации в экологических типах сообществ обусловлены теми же причинами, что и на луньском полигоне, но, в отличие от него, загрязняющее влияние платформы Моликпак отчетливо выражено. Оно отражается в присутствии вокруг нее толерантных к эвтрофикации и загрязнению животных, и снижении индекса *AMBI* (уменьшение степени повреждения биотопов) с увеличением расстояния от места ее установки. В то же время, уровень этого воздействия минимален по сравнению, например, с прибрежными акваториями Владивостока.

2.4.6 Пильтун-Астохское месторождения – район платформы ПА-Б

наблюдения. Аутэкологические Позитивные индикаторы эвтрофикации (оппортунисты первого порядка) отмечены на большинстве станций, а в точке REF3 присутствуют и оппортунисты второго порядка (рисунок 2.30). В то же время, на 14 из 23 опробованных станций отчетливо преобладают экстремально чувствительные животные, на остальных – индифферентные, а вклад оппортунистов первого порядка наиболее заметен на угловой станции лицензионной площади NW1, где он сопоставим с таковым экстремально чувствительных животных. Макрозообентос имел хороший статус на 20 станциях, высокий – на двух, а на одной – S125 – умеренный. Все это позволяет сделать вывод в целом о благоприятном состоянии среды на исследованном полигоне, но не столь хорошем, как на двух других приплатформенных полигонах, рассмотренных в разделах 2.4.4 и 2.4.5. Доля животных, успешно расклассифицированных по экологическим группам, была весьма высока, хотя и ниже, чем для прибрежья Владивостока: нерасклассифицированные животные присутствовали на 10 из 23 станций с превышением 1 % на трех из них (0,1–0,4 и 1,6, 7,6 и 9,8 %; приложение таблица В.15).

Экологические группы: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.30 – Постанционное распределение экологических характеристик макрозообентоса у платформы ПА-Б

Усреднение параметров по радиусам с увеличением расстояния от точки установки платформ не показывает ее отчётливого влияния на донное население этой акватории

(рисунок 2.31). Доля экстремально чувствительных к загрязнению и эвтрофикации видов снижается с увеличением расстояния от платформы, а вклад индифферентных и толерантных животных, а также оппортунистов первого порядка возрастает. Первые играют наибольшую роль на контрольных станциях, вторые – на расстоянии 1000 м от платформы и угловых станциях лицензионной площади и здесь же вклад оппортунистов также достигает максимума. Кроме того, в этом же направлении увеличиваются средние значения индекса *AMBI* с минимумом на контрольных станциях и максимумом в 1000 м от платформы и угловых станциях (степень повреждения изменяется от слегка нарушенной до ненарушенной). В тоже время, на всех расстояниях от платформы макрозообентос имеет статус не ниже хорошего (средние значения индекса *M-AMBI*), а в 1000 м – даже высокий.

Рисунок 2.31 – Распределение экологических характеристик макрозообентоса у платформы ПА-Б на разных расстояниях, контрольных станциях и угловых точках лицензионной площади
Синэкологические наблюдения. По биомассе и плотности таксонов донных животных обследованные станции могут быть отнесены к трем сообществам (приложение таблица Г.1, Г.2, рисунок 2.32):

- I. Амфипод Protomedeia fasciata (S125, S250, N500, E1000, N1000, S1000 и SW5);
- II. Плоских морских ежей Echinarachnius parma (E125, N125, W125, E250, N250, W250, E500, W500 и W1000);
- III. Плоских морских ежей и двустворчатых моллюсков Echinarachnius parma + Ophelia limacina (S500, REF1-3, NW1, NE3 и NE4).

Римские цифры – выделенные сообщества Рисунок 2.32 – Ординация станций алгоритмом нечеткой классификации по плотности поселения таксонов макрозообентоса (преобразование – корень четвертой степени, метод – ward.D2, метрика – коэффициент Брея-Кёртиса; компоненты 1 и 2 объясняют 37,48 % изменчивости точек) и распределение выделенных сообществ на исследованной акватории (внемасштабная схема)

Полученные ординации подтверждаются результатами процедуры ANOSIM (приложение таблица Г.3). Распределение сообществ I *P. fasciata*, II *E. parma* и III *E. parma* + *O. limacina* носит, в целом, как и других ассоциаций у остальных платформ, мозаичных характер (рисунок 2.32). В то же время в схеме распределения группировок прослеживаются и некоторые закономерности. Сообщество III локализовано, главным образом к северу от платформы, II – на ближних к платформе станциях с запада, севера и востока, III – на станциях дальних радиусов с севера и востока, и почти всех станциях с юга. В сообществах *E. parma* и *E. parma* + *O. limacina* преобладают экстремально чувствительные к загрязнению и эвтрофикации виды, а в группировке *P. fasciata* доминируют индифферентные представители макрозообентоса; оппортунисты первого порядка наиболее заметны в ассоциации *E. parma* + *O. limacina* (рисунок 2.33).

В соответствие со средними величинами индекса AMBI, наименее поврежденным

является группировка *E. parma* и ее местообитание, наиболее – ассоциация *P. fasciata*. У агломераций *P. fasciata* и *E. parma* + *O. limacina* экологическое состояние варьирует от ненарушенного до слегка нарушенного, а у *E. parma* изменения состояния не выходят за рамки неповрежденного (таблица 2.15, см. также таблицу 2.1). Все группировки характеризуются, в среднем, хорошим экологическим статусом (индекс *M-AMBI* > 0,53 усл. ед.). У ассоциации *P. fasciata* экологический статус изменяется от умеренного до высокого, у *E. parma* – от хорошего до высокого, у *E. parma* + *O. limacina* эти вариации происходят в пределах хорошего. Сообщество *P. fasciata*, учитывая значения *ПЭС* и статистики Кларка, является физически контролируемым, *E. parma* – биологически сбалансированным, а группировку *E. parma* + *O. limacina* следует отнести к разбалансированному экологическому типу.

Легенда: I–V – соответственно экстремально чувствительные, индифферентные и толерантные виды, оппортунисты 1 и 2-го порядка Рисунок 2.33 – Экологический состав выделенных сообществ

Таблица	2.15	_	Статистические	характеристики	использованных	параметров	у
выделенн	ых сос	обще	еств макрозообент	oca			

		Сообщество	
Параметр	I. P. fasciata	II. E. parma	III. E. parma + O. limacina
Индекс АМВІ	$\frac{1,28\pm0,07}{0,99-1,47}$	$\frac{0,47\pm0,09}{0,25-1,04}$	<u>0,81±0,26</u> 0,10–1,73
Индекс М-АМВІ	<u>0,668±0,057</u> 0,518–0,921	$\frac{0,703\pm0,016}{0,663-0,815}$	$\frac{0,635\pm0,020}{0,566-0,693}$
Показатель экологического стресса, ПЭС	34,8	10,8	21,9
Статистика Кларка, W	<u>0,044±0,061</u> -0,121–0,270	$\frac{0,242\pm0,020}{0,151-0,335}$	$\frac{0,269\pm0,042}{0,120-0,362}$

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Таким образом, основываясь на локализации сообществ, синэкологический анализ подтверждает вывод об отсутствии существенного воздействия технологических процессов платформы на донное население, сделанный на основе усреднений данных по радиусам. Об этом свидетельствует также распределение концентраций углеводородов – их максимальное содержание фиксируется в пределах сообщества *E. parma* + *O. limacina*, наиболее удаленного от места их вероятного поступления (таблица 2.16). Последнее говорит о наличии иного, чем платформа, источника притока углеводородов в донные отложения исследованной акватории.

Выделенные группировки обитают, в среднем, примерно на одной и той же глубине, при этом минимальные глубины регистрации сообществ также почти одинаковы, но максимальные глубины заметно выше у *E. parma* + *O. limacina*, чем у *P. fasciata* и *E. parma* (таблица 2.16). Сообщество *E. parma* + *O. limacina* приурочено к песчаным осадкам с низким содержанием псефитов и алевропелитов. Группировки *P. fasciata* и *E. parma* обитают на песчаных грунтах со значительной примесью гравийно-галечных фракций (доля алевропелитов в местообитании первого заметно выше, а псефитов – почти в два раза ниже).

Параметр	I. P. fasciata	II. E. parma	III. E. parma + O. limacina
	<u>31,0±0,5</u>	<u>31,5±0,4</u>	<u>34,5±2,9</u>
Глубина, м	28,9–32,6	29,5–32,5	27,2–56,2
Conorwaning Readuran %	$15,5\pm10,1$	$28,8\pm10,1$	<u>7,6±6,5</u>
Содержание псефитов, 78	0,2–67,8	0,1–64,1	0,1–43,5
	<u>80,0±10,2</u>	70,3±10,2	<u>91,8±6,7</u>
Содержание псаммитов, 70	29,7–99,4	35,0–99,4	55,2–99,5
	<u>4,5±4,1</u>	$0,8\pm0,2$	<u>0,6±0,2</u>
Содержание алевропелитов, 76	0,1–27,3	0,1–2,1	0,2–1,3
	$1,7\pm0,5$	$2,4{\pm}0,9$	$3,8\pm2,1$
Оощие углеводороды, мкг/г	0,5–4,5	0,5–8,3	1,2–15,2

Таблица 2.16 – Некоторые характеристики среды в местах обитания выделенных сообществ

Примечание. Над чертой – среднее значение ± ошибка репрезентативности, под чертой – диапазон изменений.

Как было показано в разделе 2.4.4, выделенные сообщества обитают в условиях исключительно высокой интенсивности гидро- и литодинамических процессов, обуславливающих значительную естественную изменчивость среды, как во времени, так и в пространстве. Поэтому, вариации в экологических типах сообществ обусловлены теми же причинами, что и на луньском полигоне. Однако, скорее всего вследствие геоморфологических причин, периоды покоя между пертурбациями осадков здесь продолжительнее и сообщества успевают сформироваться – сбалансироваться (*E. parma*),

или выстроиться вдоль экологических градиентов (*P. fasciata* и *E. parma* + *O. limacina*), которые на исследованной акватории весьма значительны, судя по диапазонам изменения содержания частиц разных фракций.

2.5 Схема анализа качества морской среды и рекомендации для применения биотических индексов при определении качества морской среды

Все описания экологического состояния исследованных акваторий, сделанные в предыдущем разделе, следуют единой схеме (рисунок 2.34). На взгляд авторов, такая схема является наиболее оптимальной и предельно простой: используются всего пять интегральных характеристик – индексы TPF_{bio} (по возможности), *AMBI* и *M-AMBI*, *ПЭС* и *W*-статистика Кларка, причем большинство из них вычисляется при помощи прикладных программ, размещенных на интернет ресурсах. Кроме того, в ней суммированы рекомендации для применения биотических индексов при определении качества морской среды.

Биологические данные: плотность поселения, биомасса, частота встречаемости (*A*, *B*, *F*_q)

Аутэкологический подход

Постанционное определение индексов *TPF*_{bio}, *AMBI* и *M-AMBI*

Получение спектров экологического состава донного населения по отношению к загрязнению и эвтрофикации

Различные усреднения, например, для сравнения исследованных акваторий Синэкологический подход

Выделение группировок, доказательство справедливости разбиения, наименование сообществ

> Вычисление ПЭС и классификация сообществ

Получение спектров экологического состава сообществ по отношению к загрязнению и эвтрофикации

Усреднения индексов и сравнение сообществ, сопоставление с косными факторами

Заключение о состоянии донного населения и морской среды

Рисунок 2.34 – Схема анализа состояния морской среды на основе биоиндикации и использовании индексов *TPF*_{bio}, *AMBI* и *M-AMBI*, ПЭС и *W*-статистики

Естественно, в соответствии с целями и задачами конкретного исследования, данная схема может быть упрощена – совершенно не обязательно проходить все ее этапы, за исключением получения биологических данных, постанционного определения индексов и формулировки заключения. Аутэкологический подход достаточен для получения заключения об экологическом состоянии и степени повреждения искомой акватории. Для детализации картины можно использовать и другие экологические индексы, а также характеристики обилия (A, B, R, SR, H', e, Si) строго соблюдая рекомендации, опубликованные автором ранее [13]. Следует подчеркнуть, что применение индексов AMBI и M-AMBI требует их адаптации для искомой акватории, что отчетливо видно протоколов вычисления этих показателей: ИЗ процент классифицированных по экологическим группам таксонов донных животных после выполнения этой процедуры явно выше, чем без нее. Последовательность операций при выполнении адаптации детализирована в [37].

Для истолкования полученных результатов и выяснения причин ухудшения или улучшения экологической ситуации желательно использовать синэкологический подход и всю доступную информацию по факторам среды (в соответствие с методологией, рассмотренной в [28]). Здесь уместно применение широкого спектра многомерных статистических методов, включая классификационные процедуры на основе теории нечетких множеств, тест Мантеля, канонический анализ соответствий с построением моделей [21, 32, 49].

Итак, апробацию адаптированных и разработанных методов анализа состояния морской среды с позиций биоиндикации на основе использования макрозообентоса следует признать успешным. Аутэкологические биотические индексы *AMBI*, *M-AMBI* и синэкологический показатель экологического стресса ($\Pi \ni C$) возможно использовать на любой акватории, хотя для первых двух параметров желательна адаптация к видовому составу макрозообентоса искомого района. К сожалению, индекс TPF_{bio} в настоящее время можно использовать только для залива Петра Великого, а расширение области его применения на другие районы требует общирных предварительных исследований.

3 Совершенствование технологии ведения онлайн базы данных «загрязнение морей», региональных баз данных и расширение перечня предоставляемой потребителям информации

Основными задачами работы РЦОД ДВ является восстановление исторических данных измерений параметров морской среды с целью дополнения Госфонда РФ недостающими материалами, а также формирование регионального фонда данных для обеспечения научных и прикладных исследований на дальневосточных акваториях и создание исторических массивов данных для загрузки в базы данных ФГБУ «ДВНИГМИ». Отдельной технологией является формирование базы данных результатов наблюдений по программе ОГСН за загрязнением вод и донных отложений залива Петра Великого.

Технология, созданная в ФГБУ «ДВНИГМИ» совместно с ФГБУ «Приморское УГМС», включает в себя оригинальный программный комплекс, который позволяет формировать БД наблюдений за загрязнением вод и грунтов залива Петра Великого и создавать необходимые статистические отчёты. Разработан отдельный программный блок, предназначенный для занесения и контроля качества результатов измерений. Данные структурированы по группам: метаданные, метеорологические и гидрооптические нараметры, гидрологические и гидрохимические характеристики, загрязняющие вещества в толще вод и в донных отложениях. В настоящее время, помимо внесения данных текущего года, проводится наполнение БД результатами измерений прошлых лет.

3.1 Этапы выполнения работ по теме

Согласно с календарным планом, все работы по теме 4.6.4 в 2024 году были распределены на четыре этапа:

- Этап I: «Наполнение БД данными 2023 г.».

Полученные результаты: база данных «ОГСН залива Петра Великого» пополнена результатами измерений 2023 г.; проведены изменения в СУБД в части получения дополнительных статистических характеристик и доработки форм отчётов; начата подготовка шаблона для передачи данных в БД «Загрязнение морей» (ФГБУ «ГОИН») на четвертом этапе работ;

_

Этап II. «Оптимизация структуры и содержания региональной БД».

Полученные результаты: выполнены оптимизация и дополнение базы данных «ОГСН залива Петра Великого»; проведены изменения в СУБД в части доработки форм отчётов; продолжена подготовка шаблона для передачи данных в БД «Загрязнение морей» (ФГБУ «ГОИН») на четвертом этапе работ;

—

Этап III. «Оптимизация структуры и содержания региональной БД».

Полученные результаты: проведен критический контроль результатов измерений

прошлых лет; продолжено тестирование шаблона для передачи данных в БД «Загрязнение морей» (ФГБУ «ГОИН») на четвертом этапе работ;

Этап IV. «Передача информации и подготовка отчета».

Полученные результаты: данные измерений 2004 г. переведены с бумажных на технические носители и помещены в базу данных; для передачи в ФГБУ «ГОИН» подготовлены электронные массивы в формате MS-Excel с историческими данными и таковыми за 2023 г. для пополнения БД «Загрязнение морей»; выполнен критический контроль результатов измерений прошлых лет. Подготовлен промежуточный годовой отчет по ГОСТ.

3.2 Экспедиционные исследования в 2022 году

3.2.1 Основание проведения исследований

Экспедиционные исследования в заливе Петра Великого в рамках программы «Общегосударственной службы наблюдений» (ОГСН) осуществлены в рамках соглашения № 301/2023 от 05.04.2023 г. «О совместном ведении мониторинга загрязнения морской среды» между ФГБУ «ДВНИГМИ» и ФГБУ «Приморское УГМС» и проводились на основании Разрешения Министерства науки и высшего образования Российской Федерации России № МН-23-08/45/30 от 22 ноября 2022 г.

3.2.2 Цели и задачи исследований

Основными целями исследований по программе ОГСН являлись:

- 1. изучение особенностей структуры и динамики вод Залива Петра Великого с учетом сезонной изменчивости полей океанографических параметров;
- 2. мониторинг загрязнения морской воды и донных отложений;
- 3. оценка экологической ситуации в заливе Петра Великого.

Исходя из поставленных целей, в ходе экспедиционных работ были решены следующие задачи:

- океанографическая съемка на сети контрольных точек в заливе Петра Великого с измерениями температуры и солености морской воды от поверхности до дна CTDзондом и отбором проб воды на гидрохимические анализы;
- отбор проб воды и донных отложений для оценки состояния загрязнения морской среды;
- стандартные гидрометеорологические наблюдения;
- наблюдения за аномальными явлениями в атмосфере и загрязнением поверхности моря нефтью и нефтепродуктами.

3.2.3 Районы и последовательность выполнения работ

Схема контрольных точек наблюдений по программе ОГСН в заливе Петра Великого представлена на рисунке 3.1. В пунктах наблюдений в первую очередь производятся СТД-измерения и отбор проб воды для гидрохимических анализов и определения содержания загрязняющих веществ, затем выполняется отбор проб донных отложений для определения содержания загрязняющих веществ. По всему маршруту следования судна проводятся гидрометеорологические наблюдения и наблюдения за загрязнением поверхности моря нефтью и нефтепродуктами.

Определение содержания загрязняющих веществ в отобранных пробах морской воды и донных отложений производилось в береговой лаборатории мониторинга загрязнения морских вод ФГБУ «Приморское управление по гидрометеорологии и мониторингу окружающей среды» по стандартным методикам Росгидромета [32].

Рисунок 3.1 – Схема контрольных точек ОГСН в заливе Петра Великого

3.2.4 Виды наблюдений и работ

Программа работ включала:

 исследование гидрохимического режима и уровня загрязнения вод и донных отложений на акватории залива Петра Великого;

– исследование гидробиологического состояния вод по микробиологии.

Для оценки загрязнения морской среды наблюдения проводились за нефтепродуктами, тяжелыми металлами, хлорорганическими пестицидами, фенолами и детергентами.

Гидрохимический режим определялся по содержанию растворенного кислорода, концентрации водородных ионов (pH), БПК₅, нитратному, аммонийному и общему азоту,

общему и минеральному фосфору и кремнию. Также проводились наблюдения за гидрометеорологическими параметрами: температурой и соленостью воды, скоростью и направлением ветра, атмосферным давлением, температурой и влажностью воздуха.

3.2.5 Используемые при проведении исследований суда, приборы и оборудование

Отбор проб в бухтах Золотой Рог, Диомид, проливе Босфор Восточный и заливе Находка проводился на катере Nimbus ФГБУ «Приморского УГМС», а в Амурском и Уссурийском заливах – на НИС «Павел Гордиенко» ФГБУ «ДВНИГМИ» (рисунок 3.2).

Рисунок 3.2 – НИС «Павел Гордиенко»

При проведении исследований использовались следующие приборы и оборудование:

- барометр М-67,

- барограф М-22Н,
- психрометр МВ-4М,
- анемометр МС-13,
- термометр ТМ-10,
- CTD-зонд «SBE 19plus Seacat Profiler»,
- батометры Niskin,
- дночерпатели «VAN VEEN».

3.2.6 Полученные результаты

Всего было выполнено 108 станций, сводная информация о дате, месте и объёме проведённых в 2023 году наблюдений приведена в таблице 3.1.

№ станции	Точка ОГСН	Дата	Время	Широта	Долгота	Глубина	Количество горизонтов	Гидрология	Биогены	Загрязнение в водной толще	Загрязнение донных отложений
1	19	30.05.2023	10:40	43,0733	131,9050	26	2	+	+	+	+
2	18	30.05.2023	11:30	43,0550	131,9060	41	2	+	+	+	+
3	23	30.05.2023	12:00	43,0693	131,8510	38	2	+	+	+	+
4	19	30.05.2023	12:30	43,0838	131,8783	28	2	+	+	+	+
5	1	30.05.2023	13:00	43,1067	131,9283	9	2	+	+	+	+
6	7	30.05.2023	13:30	43,1110	131,8908	14	2	+	+	+	+
7	11	30.05.2023	14:00	43,0988	131,8750	20	2	+	+	+	+
8	12	30.05.2023	14:30	43,0917	131,8767	24	2	+	+	+	+
9	22	30.05.2023	15:00	43,0900	131,8942	13	2	+	+	+	+
10	39	06.06.2023	11:58	42,8867	131,4383	26	2	+	+	+	+
11	37	06.06.2023	14:00	42,9383	131,6100	39	2	+	+	+	+
12	35	06.06.2023	15:41	42,9583	131,6800	31	2	+	+	+	+
13	28	06.06.2023	18:14	43,0833	131,7350	16	2	+	+	+	+
14	52	06.06.2023	19:43	43,1000	131,6550	10	2	+	+	+	+
15	12	07.06.2023	00:16	43,2533	131,7800	8	2	+	+	+	+
16	11	07.06.2023	01:37	43,2500	131,9000	10	2	+	+	+	+
17	16	07.06.2023	03:38	43,1833	131,8833	21	2	+	+	+	+
18	24	07.06.2023	05:48	43,1200	131,8533	23	2	+	+	+	+
19	108	07.06.2023	13:05	42,9333	131,9433	56	2	+	+	+	+
20	208	07.06.2023	14:17	42,9833	132,0000	46	2	+	+	+	+
21	117	07.06.2023	18:20	42,8867	132,2000	68	2	+	+	+	+
22	112	07.06.2023	20:32	43,0133	132,3067	26	2	+	+	+	+
23	105	07.06.2023	22:28	43,1283	132,3183	18	2	+	+	+	+
24	104	08.06.2023	00:25	43,2737	132,3067	12	2	+	+	+	+
25	106	08.06.2023	04:50	43,1133	132,1833	41	2	+	+	+	+
26	103	08.06.2023	07:05	43,1080	132,0183	15	2	+	+	+	+
27	100	08.06.2023	08:06	43,0883	131,9900	25	2	+	+	+	+
28	25	24.06.2023	11:05	42,7467	133,0667	17	2	+	+	+	_
29	12	29.06.2023	04:36	42,7183	132,9150	45	2	+	+	+	+
30	33	29.06.2023	05:17	42,7223	133,0055	29	2	+	+	+	+
31	35	29.06.2023	05:48	42,7333	133,0167	29	2	+	+	+	+
32	25	29.06.2023	06:23	42,7467	133,0667	17	2	+	+	+	+
33	18	29.06.2023	07:15	42,8250	132,9733	6	2	+	+	+	+
34	1	29.06.2023	08:01	42,7883	132,8700	10	2	+	+	+	+
35	2	29.06.2023	08:23	42,8000	132,8867	8	2	+	+	+	+
36	7	29.06.2023	08:41	42,8183	132,9150	10	2	+	+	+	+
37	36	29.06.2023	21:14	42,7767	132,9000	21	2	+	+	+	+
38	15	29.06.2023	21:42	42,7667	132,9383	33	2	+	+	+	+
39	152	29.06.2023	22:07	42,7533	132,9167	25	2	+	+	+	+
40	14	29.06.2023	22:28	42,7417	132,9333	38	2	+	+	+	+
41	19	18.08.2023	11:15	43,0733	131,9078	26	2	+	+	+	_
42	18	18.08.2023	11:30	43.0577	131.9078	32	2	+	+	+	_
43	23	18.08.2023	11:45	43,0693	131,8517	35	2	+	+	+	_
44	19	18.08.2023	12:05	43,0838	131,8783	27	2	+	+	+	_

Таблица 3.1 — Сводная таблица станций, выполненных в 2023 г.

Продолжение таблицы 3.1

№ станции	Точка ОГСН	Дата	Время	Широта	Долгота	Глубина	Количество горизонтов	Гидрология	Биогены	Загрязнение в водной толще	Загрязнение донных отложений
45	11	18.08.2023	12:20	43,0988	131,8750	20	2	+	+	+	—
46	12	18.08.2023	12:35	43,0917	131,8767	24	2	+	+	+	—
47	1	18.08.2023	12:55	43,1067	131,9283	9	2	+	+	+	—
48	7	18.08.2023	13:15	43,1110	131,8908	14	2	+	+	+	—
49	22	18.08.2023	13:45	43,0900	131,8942	13	2	+	+	+	—
50	12	24.08.2023	06:15	42,7183	132,9150	45	2	+	+	+	—
51	33	24.08.2023	06:35	42,7223	133,0055	29	2	+	+	+	_
52	35	24.08.2023	06:55	42,7333	133,0167	29	2	+	+	+	_
53	18	24.08.2023	07:15	42,8250	132,9733	6	2	+	+	+	—
54	7	24.08.2023	07:35	42,8183	132,9150	10	2	+	+	+	_
55	36	24.08.2023	08:05	42,7767	132,9000	21	2	+	+	+	—
56	15	24.08.2023	08:15	42,7667	132,9383	33	2	+	+	+	—
57	152	24.08.2023	08:35	42,7533	132,9167	25	2	+	+	+	—
58	14	24.08.2023	08:55	42,7417	132,9333	38	2	+	+	+	—
59	1	24.08.2023	10:05	42,7883	132,8700	10	2	+	+	+	_
60	2	24.08.2023	10:25	42,8000	132,8867	8	2	+	+	+	_
61	39	15.09.2023	12:07	42,8867	131,4383	23	2	+	+	+	+
62	37	15.09.2023	14:38	42,9398	131,6115	36	2	+	+	+	+
63	52	15.09.2023	21:53	43,1000	131,6550	13	2	+	+	+	+
64	28	15.09.2023	23:43	43,0833	131,7350	14	2	+	+	+	+
65	11	16.09.2023	04:55	43,2500	131,9000	10	2	+	+	+	+
66	12	16.09.2023	05:44	43,2533	131,7800	10	2	+	+	+	+
67	16	16.09.2023	08:14	43,1833	131,8833	21	2	+	+	+	+
68	24	16.09.2023	09:57	43,1200	131,8533	21	2	+	+	+	+
69	35	16.09.2023	14:18	42,9583	131,6800	29	2	+	+	+	+
70	108	16.09.2023	21:36	42,9333	131,9433	50	2	+	+	+	_
71	208	16.09.2023	22:56	42,9833	132,0000	54	2	+	+	+	_
72	117	17.09.2023	03:42	42,8860	132,2010	66	2	+	+	+	—
73	112	17.09.2023	05:35	43,0133	132,3067	25	2	+	+	+	—
74	105	17.09.2023	11:22	43,1283	132,3183	17	2	+	+	+	—
75	106	17.09.2023	12:47	43,1130	132,1830	42	2	+	+	+	—
76	104	17.09.2023	17:08	43,2737	132,3067	10	2	+	+	+	_
77	103	17.09.2023	21:45	43,1080	132,0183	23	2	+	+	+	_
78	100	17.09.2023	22:05	43,0883	131,9888	24	2	+	+	+	—
79	108	12.10.2023	10:18	42,9333	131,9433	50	2	+	+	+	+
80	103	12.10.2023	10:28	43,1080	132,0183	23	2	+	+	+	+
81	100	12.10.2023	10:45	43,0883	131,9888	24	2	+	+	+	+
82	208	12.10.2023	10:56	42,9833	131,9967	54	2	+	+	+	+
83	117	12.10.2023	13:12	42,8860	132,2010	66	2	+	+	+	+
84	112	12.10.2023	15:18	43,0133	132,3067	25	2	+	+	+	+
85	105	12.10.2023	16:22	43,1283	132,3183	17	2	+	+	+	+
86	106	12.10.2023	17:32	43,1130	132,1830	42	2	+	+	+	+
87	104	12.10.2023	19:08	43,2737	132,3067	10	2	+	+	+	+
88	18	13.10.2023	11:11	43,0577	131,9078	32	2	+	+	+	+

№ станции	Точка ОГСН	Дата	Время	Широта	Долгота	Глубина	Количество горизонтов	Гидрология	Биогены	Загрязнение в водной толще	Загрязнение донных отложений
89	19	13.10.2023	11:27	43,0733	131,9078	26	2	+	+	+	+
90	23	13.10.2023	12:17	43,0693	131,8517	35	2	+	+	+	+
91	19	13.10.2023	12:34	43,0838	131,8783	27	2	+	+	+	+
92	12	13.10.2023	12:48	43,0917	131,8767	24	2	+	+	+	+
93	11	13.10.2023	13:01	43,0988	131,8750	20	2	+	+	+	+
94	7	13.10.2023	13:29	43,1110	131,8908	14	2	+	+	+	+
95	22	13.10.2023	13:48	43,0900	131,8942	13	2	+	+	+	+
96	1	13.10.2023	14:02	43,1067	131,9283	9	2	+	+	+	+
97	12	28.10.2023	07:15	42,7183	132,9150	45	2	+	+	+	+
98	33	28.10.2023	07:35	42,7223	133,0055	29	2	+	+	+	+
99	35	28.10.2023	07:55	42,7333	133,0167	29	2	+	+	+	+
100	18	28.10.2023	08:15	42,8250	132,9733	6	2	+	+	+	+
101	7	28.10.2023	08:35	42,8183	132,9150	10	2	+	+	+	+
102	36	28.10.2023	09:05	42,7767	132,9000	21	2	+	+	+	+
103	15	28.10.2023	09:15	42,7667	132,9383	33	2	+	+	+	+
104	152	28.10.2023	09:35	42,7533	132,9167	25	2	+	+	+	+
105	14	28.10.2023	09:55	42,7417	132,9333	38	2	+	+	+	+
106	1	28.10.2023	11:05	42,7883	132,8700	10	2	+	+	+	+
107	2	28.10.2023	11:25	42,8000	132,8867	8	2	+	+	+	+
108	25	28.10.2023	12:05	42,7467	133,0667	17	2	+	+	+	+

Продолжение таблицы 3.1

3.3 Экспедиционные исследования в 2004 году

В 2004 году измерения и взятие проб в ходе работ по программе ОГСН проводились на акваториях бухты Золотой Рог, Амурского и Уссурийского заливов с борта ИС «Гидробиолог», ФГБУ «ДВНИГМИ». Результаты экспедиционных измерений и химического анализа проб морской воды хранятся в ФГБУ «ДВНИГМИ» в виде годовых отчётов и разрозненных файлов. Для внесения этих данных в существующую базу данных ОГСН, был разработан отдельный программный модуль, в результате применения которого данные измерений, полученные в 2004 году, были импортированы в БД и готовы к дальнейшему применению. Сводная информация о дате, месте и объёме проведённых в 2004 году наблюдений, приведена в таблице 3.2.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	№ станции	Точка ОГСН	Дата	Время	Широта	Долгота	Глубина	оличество ризонтов	идрология	Биогены	грязнение в водной толще	ггрязнение донных гложений
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								Х	Г		39	o. 3a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	12.04.2004	22:22	43,1067	131,9283	10	2	+	+	+	+
	2	7	12.04.2004	22:22	43,1100	131,8900	12	2	+	+	+	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	15	12.04.2004	23:00	43,0842	131,8760	26	3	+	+	+	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	11	12.04.2004	23:23	43,0992	131,8750	18	3	+	+	+	—
	5	25	13.04.2004	00:00	43,0680	131,8697	17	3	+	+	+	—
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	201	13.04.2004	01:00	43,0508	131,9005	36	4	+	+	+	_
	7	23	13.04.2004	04:00	43,0683	131,8500	34	4	+	+	+	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	19	13.04.2004	05:00	43,0675	131,9092	26	3	+	+	+	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	20	13.04.2004	06:00	43,0840	131,8842	12	1	+	+	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	130	20.04.2004	23:00	42,7917	131,6783	30	3	+	+	+	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	37	21.04.2004	00:00	42,9367	131,6100	36	4	+	+	+	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	39	21.04.2004	01:01	42,8867	131,4467	22	3	+	+	+	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	52	21.04.2004	03:03	43,1000	131,6550	8	2	+	+	+	—
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	12	21.04.2004	05:05	43,2533	131,7800	4	1	+	+	+	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	11	21.04.2004	05:05	43,2500	131,9000	1	1	+	+	+	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	16	21.04.2004	06:06	43,1833	131,8833	16	3	+	+	+	+
18 208 25.04.2004 22:23 42.9833 13.2,0000 44 4 +	17	24	21.04.2004	06:07	43,1200	131,8533	22	3	+	+	+	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	208	25.04.2004	22:23	42,9833	132,0000	44	4	+	+	+	—
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19	108	25.04.2004	23:00	42,9333	131,9433	55	4	+	+	+	—
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	117	26.04.2004	00:01	42,8867	132,2000	65	4	+	+	+	—
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	112	26.04.2004	02:03	43,0133	132,3067	18	3	+	+	+	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	105	26.04.2004	03:04	43,1283	132,3183	14	2	+	+	+	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	104	26.04.2004	05:05	43,2733	132,3067	1	1	+	+	+	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	106	26.04.2004	06:07	43,1133	132,1833	42	4	+	+	+	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	100	26.04.2004	08:08	43,0883	131,9900	15	1	+	+	+	—
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	103	26.04.2004	08:08	43,1133	132,0250	15	2	+	+	+	—
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	100	26.04.2004	08:08	43,0883	131,9900	15	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	18	17.05.2004	00:00	43,0583	131,9100	28	4	+	+	+	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	7	17.05.2004	22:22	43,1100	131,8900	10	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	11	17.05.2004	22:22	43,0992	131,8750	19	3	+	+	+	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	15	17.05.2004	22:23	43,0842	131,8760	26	3	+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	23	17.05.2004	23:00	43,0683	131,8500	37	4	+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	25	17.05.2004	23:23	43,0680	131,8697	27	3	+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	19	18.05.2004	00:00	43,0740	131,9085	28	3	+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	20	18.05.2004	01:00	43,0840	131,8842		1	+	+	+	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	152	24.05.2004	04:05	42,7542	132,9167	24	4	+	+	+	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/	14	24.05.2004	05:05	42,7417	132,9333	40	4	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	15	24.05.2004	06:06	42,/66/	132,9383	30	4	+	+	+	—
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	30	24.05.2004	06:07	42,7767	132,9000	22	3	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1	24.05.2004	08:08	42,7883	132,8700	8	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	2	24.05.2004	08:08	42,8000	132,8867	10	2	+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	/	24.05.2004	08:09	42,8183	132,9150	10	2	+	+	+	+
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43	18	24.05.2004	10:10	42,8250	132,9733	/	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	25	24.05.2004	10:10	42,7407	133,0007	14	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	12	24.05.2004	11:11	42,/333	132,9000	2ð 44	3	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	12	24.05.2004	12:12	42,/183	132,9130	44	4	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4/	15	07.06.2004	25:25	43,0842	131,8/00	20	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	23 7	07.06.2004	22:22	43,0080	131,809/	2/ 16	1	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	1	07.00.2004	22:22	43,1100	131,0900	0	1	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	1 7	07.00.2004	22:22	43,1007	131,9283	0	<u> </u>	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	/ 11	07.00.2004	22:22	43,1100	131,0900	10	2	+	+	+	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	22	07.00.2004	23.23	43,0992	131,0/30	37	3	+	+	+	_
	53	18	08.06.2004	01.00	43 0583	131,0300	36	4	+ +	+ 	+ 	_

Таблица 3.2 – Сводная таблица станций, выполненных в 2004 г.

Продолжение таблицы 3.2

№ станции	Точка ОГСН	Дата	Время	Широта	Долгота	Глубина	Количество горизонтов	Гидрология	Биогены	Загрязнение в водной толще	Загрязнение донных отложений
55	19	08.06.2004	02:00	43,0740	131,9085	25	3	+	+	+	_
56	20	08.06.2004	02:00	43,0840	131,8842	10	1	+	+	+	_
57	130	15.06.2004	00:00	42,7917	131,6783	30	3	+	+	+	_
58	37	15.06.2004	01:01	42,9367	131,6100	36	4	+	+	+	_
59	39	15.06.2004	02:02	42,8867	131,4467	21	3	+	+	+	_
60	52	15.06.2004	04:04	43,1000	131,6550	8	2	+	+	+	_
61	12	15.06.2004	05:06	43,2533	131,7800	8	1	+	+	+	_
62	11	15.06.2004	06:06	43,2500	131,9000	6	1	+	+	+	_
63	16	15.06.2004	07:07	43,1833	131,8833	18	3	+	+	+	_
64	24	15.06.2004	07:08	43,1200	131,8533	22	3	+	+	+	_
65	18	07.07.2004	00:00	43,0583	131,9100	32	4	+	+	+	_
66	19	07.07.2004	01:00	43,0740	131,9085	24	3	+	+	+	_
67	22	07.07.2004	02:00	43,0900	131,8917	7	1	+	+	+	+
68	23	07.07.2004	02:00	43,0683	131,8500	34	4	+	+	+	_
69	25	07.07.2004	03:03	43,0680	131,8697	25	3	+	+	+	_
70	12	07.07.2004	03:04	43,0917	131,8760	25	3	+	+	+	—
71	11	07.07.2004	04:04	43,0992	131,8750	17	3	+	+	+	_
72	7	07.07.2004	04:05	43,1100	131,8900	18	2	+	+	+	_
73	1	07.07.2004	05:05	43,1067	131,9283	8	2	+	+	+	_
74	103	11.07.2004	00:00	43,1133	132,0250	18	2	+	+	+	_
75	100	11.07.2004	23:23	43,0883	131,9900	20	3	+	+	+	_
76	106	12.07.2004	01:01	43,1133	132,1833	34	4	+	+	+	_
77	208	12.07.2004	03:03	42,9833	132,0000	42	4	+	+	+	_
78	108	12.07.2004	04:04	42,9333	131,9433	52	4	+	+	+	_
79	117	13.07.2004	00:01	42,8700	132,2000	61	4	+	+	+	_
80	112	13.07.2004	05:06	43,0133	132,3067	22	3	+	+	+	_
81	105	13.07.2004	06:07	43,1283	132,3183	15	2	+	+	+	_
82	104	13.07.2004	08:08	43,2733	132,3067	8	1	+	+	+	+
83	12	17.07.2004	00:00	42,7183	132,9150	43	1	+	+	+	_
84	2	17.07.2004	00:00	42,8000	132,8867	10	2	+	+	+	_
85	12	17.07.2004	00:00	42,7183	132,9150	43	3	+	+	+	_
86	1	17.07.2004	00:00	42,7883	132,8700	9	2	+	+	+	_
87	14	17.07.2004	21:21	42,7417	132,9333	37	4	+	+	+	_
88	152	17.07.2004	21:22	42,7533	132,9167	30	4	+	+	+	_
89	15	17.07.2004	22:23	42,7667	132,9383	33	4	+	+	+	_
90	36	17.07.2004	23:23	42,7767	132,9000	21	3	+	+	+	_
91	7	18.07.2004	00:01	42,8183	132,9150	10	2	+	+	+	+
92	18	18.07.2004	01:01	42,8250	132,9733	6	2	+	+	+	—
93	25	18.07.2004	02:03	42,7467	133,0667	14	3	+	+	+	—
94	35	18.07.2004	03:03	42,7333	133,0167	29	3	+	+	+	—

3.4 Подготовка материалов для передачи в ФГБУ «ГОИН»

Для передачи результатов работ по теме за год в ФГБУ «ГОИН» проведён следующий комплекс мероприятий:

- Из ФГБУ «ГОИН» получен файл в MS-Excel с данными в необходимом формате;
- На основе полученного из ФГБУ «ГОИН» файла подготовлен файл MS Excel, включающий в себя соответствующий макрос;
- В СУБД ОГСН внесены необходимые изменения (запросы) обеспечивающие связь вышеуказанного файла MS Excel с базой данных;

- После запуска макроса, производится импорт данных из БД и формирование необходимых таблиц;
- Полученный файл, после проверки будет передан в ФГБУ «ГОИН» по электронной почте.

3.5 Анализ многолетних трендов загрязнения морской среды

Анализ многолетних изменений загрязнения морской среды произведен с использованием индексов загрязненности вод (ИЗВ), которые позволяют отнести воды акваторий исследуемого района к определенному классу качества. Правила расчета индекса загрязненности вод определены «Методическими Рекомендациями по формализованной комплексной оценке качества поверхностных и морских вод по гидрохимическим показателям» (МР-1988) и уточнены авторами ежегодников «Качество морских вод по гидрохимическим показателям» (ФГБУ «ГОИН»). Для морских вод при расчете индекса используют четыре параметра с обязательным включением в этот список растворенного кислорода. Формула расчета *ИЗВ*:

$$\mathcal{H}3B = \sum_{i=1}^{4} \frac{C_i}{\Pi \square K_i} \div 4 \tag{3.1}$$

где C_i – концентрация трех наиболее значимых загрязнителей, среднее содержание которых в воде исследуемой акватории в наибольшей степени превышало ПДК. Четвертым обязательным параметром является содержание растворенного в воде кислорода, для которого значение в формуле рассчитывается делением норматива ПДК=6 мгO₂/дм³ на его реальное содержание.

Технология расчета индекса состоит из несколько последовательных этапов:

1) выбор уровня усреднения данных по пространству (одиночная станция, группа станций или полностью контролируемый район, например бухта, залив, эстуарный район реки и т.д.) и по времени (месяц, сезон или год); для выбранных станций и периода времени рассчитывается средняя концентрация всех наблюдаемых параметров;

2) для всех измеренных и нормируемых параметров морских вод, т.е. перечисленных в списке Предельно Допустимых Концентраций (ПДК-2016), рассчитывается концентрация в единицах ПДК;

3) из полученного списка средней концентрации веществ в ПДК выбираются три наиболее высоких значения для загрязняющих веществ, которые могут считаться «приоритетными» для рассматриваемой акватории в анализируемый период времени;

значения складываются;

4) норматив для кислорода 6 мгО₂/дм³ надо разделить на среднее значение концентрации кислорода в мгО₂/дм3; полученный результат добавить к сумме трех загрязнителей;

5) суммарное значение разделить на четыре и оценить класс качества воды по полученному значению ИЗВ (таблица 3.3) [70].

Таблица 3.3 – Классы качества вод и значения ИЗВ.

Класс качества		Диапазон значений ИЗВ
Очень чистые	Ι	ИЗВ ≤ 0,25
Чистые	II	$0,25 < M3B \le 0,75$
Умеренно загрязненные	III	0,75 < ИЗВ ≤ 1,25
Загрязненные	IV	$1,25 < VI3B \le 1,75$
Грязные	V	1,75 < ИЗВ ≤ 3,00

Значения *ИЗВ* по годам для каждой исследованной акватории получены в Лаборатории по мониторингу загрязнения природных вод и почв Центра по мониторингу загрязнения окружающей среды ФГБУ «Приморское управление по гидрометеорологии и мониторингу окружающей среды» (ЦМС ФГБУ «Приморского УГМС») (таблица 3.4). Использованы материалы совместной – ФГБУ «ДВНИГМИ» и ФГБУ «Приморское УГМС» – базы данных «ОГСН залива Петра Великого».

AKDOTODUG						Г	од					
Акватория	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Бухта Золотой Рог	2,50	2,25	1,68	1,40	2,20	2,20	1,78	1,47	1,26	1,08	1,17	1,47
Бухта Диомид	2,13	1,13	1,33	0,97	1,51	2,20	1,58	1,45	1,18	1,09	1,19	1,55
Пролив Босфор Восточный	1,53	1,02	1,09	0,75	1,58	2,30	2,00	1,24	1,21	0,98	1,03	1,66
Амурский залив	1,60	1,05	0,86	1,04	1,59	1,02	1,4	1,52	1,03	1,13	0,99	1,15
Уссурийский залив	1,71	1,02	0,84	1,09	1,38	2,30	1,55	1,41	1,04	0,90	1,10	0,93
Залив Находка	1,50	1,07	0,89	0,81	1,55	1,45	1,43	1,65	1,04	0,99	1,17	1,27

Таблица 3.4 – Значения ИЗВ для акваторий по годам.

Изменение *ИЗВ* для залива Петра Великого по годам представлено на рисунке 3.3. Имеющиеся данные позволяют отметить следующие черты временного хода этого индекса:

 Самой загрязнённой акваторией залива Петра Великого является бухта Золотой Рог. В период с 2012 по 2019 год её воды относились к IV и V классу качества («загрязнённые» и «грязные» воды). Вместе с тем, с 2020 по 2022 гг. наблюдалось уменьшение загрязнения всех акваторий залива Петра Великого, включая эту бухту, до Ш класса качества («умеренно загрязнённые» воды);

Рисунок 3.3 – Долговременная изменчивость величин индекса загрязнённости вод для залива Петра Великого.

- В 2023 году загрязнённость акваторий, относящихся к порту Владивосток (бухты Золотой Рог и Диомид, пролив Босфор Восточный), снова повысилась до IV класса качества;
- 3. Воды основной части прибрежья залива Петра Великого относятся к III и IV классу качества (умеренно загрязнённые» и «загрязнённые» воды). После некоторого повышения и стабилизации загрязнённости в период с 2016 по 2019 гг., с 2020 года наблюдается ее стабильное уменьшение на большей части исследованных акваторий;
- Наряду с тем, что наименее загрязнёнными являются воды Уссурийского залива, именно на этой акватории наблюдается устойчивый тренд на улучшение качества вод.
 В 2023 г. ИЗВ Уссурийского залива достигал минимальных за десять лет значений.

3.6 Итоги работ

В результате работ по теме 6.4.4 в 2024 г., произведён большой объём мероприятий в рамках выполнения функций регионального центра океанографических данных по ДВ региону:

 Региональная БД по дальневосточным морям дополнена результатами 2023 г., которые включают данные о гидролого-гидрохимическом состоянии, уровне загрязнения морской среды и гидробиологические параметры в контролируемых прибрежных и фоновых районах морей, полученные по результатам обработки проб, отобранных в ходе экспедиционных исследований в заливе Петра Великого (Японское море);

- В электронный формат с бумажных носителей переведены исторические данные экспедиционных и мониторинговых исследований по программе ОГСН в заливе Петра Великого в 2004 году;
- В ФГБУ «ГОИН» переданы электронные массивы MS-Excel с данными за 2004 и 2023 гг. для пополнения БД «Загрязнение морей».

4 Разработка прикладного программного обеспечения по обработке временных рядов наблюдений за уровнем моря для повышения эффективности предвычисления приливов

4.1 Актуальность, современное состояние и ожидаемые результаты

Исследования в рамках темы «Разработка новых моделей предвычисления приливных колебаний для предвычисления приливов на акваториях арктических морей» улучшение качества предвычислений приливного направлены на уровня для отечественных и зарубежных пунктов для календарных навигационных пособий Таблицы приливов. Одним из аспектов повышения качества предвычислений прилива является повышение точности вычисления используемых гармонических постоянных (далее – ГП) волн прилива за счет повышения качества обработки исходных данных с помощью цифровых фильтров. На современном этапе развития технологий морских наблюдений на прибрежной сети станций с использованием автоматизированных средств и последующим хранением полученных результатов наблюдений в сетевых хранилищах данных, возникает необходимость создания эргономичных инструментов, позволяющих производить эффективную обработку большого объема накопленных рядов наблюдений с меньшими трудозатратами. На данный момент возникает необходимость создания новых программных средств, дающих возможность повысить эффективность расчета ГП за счет объединения инструментов по подготовке рядов данных наблюдений за уровнем моря, алгоритмов цифровой фильтрации и методов вычисления ГП, предвычисления хода уровня на заданный период и начальную дату.

В рамках Федеральной целевой программы, начиная с 2010 г., на морях Дальнего Востока создается сеть автоматизированных постов инструментальных наблюдений за уровнем моря (АП цунами). Комплекс технических устройств АП обеспечивает регистрацию колебаний уровня моря и передачу данных измерений по каналам связи в цифровом виде с дискретностью в одну минуту. Данная работа включает в себя мониторинг данных, поступающих с АП от начала наблюдений до 2023 г. включительно на станциях Приморского УГМС, а также позволяет провести оценку возможности использования полученных данных для расчета гармонических постоянных волн прилива. В дальнейшем предполагается использовать рассчитанные ГП для предвычисления приливов, в том числе для пунктов, где раньше этого сделать было невозможно из-за отсутствия наблюдений над уровнем моря достаточной продолжительности.

Ожидаемые результаты по теме:

 Уточненные характеристики прилива для зарубежных вод Тихого океана и Азиатской части России, а также массив ежечасных рядов наблюдений за уровнем моря на основе

127

данных, полученных с АП-цунами для Азиатских вод России до 2023 г. включительно;

- Подготовленные для передачи в издательство таблицы приливов по зарубежным водам
 Тихого океана и Азиатской части России на 2026 г. (3 тома);
- Прикладное программное обеспечение (ПО) для обработки временных рядов уровня моря и формирования таблиц приливов с графическим интерфейсом пользователя.

4.2 Анализ данных наблюдений над уровнем моря

4.2.1 Выбор станций для расчёта приливных постоянных

Основным критерием при выборе станций, оборудованных АП-цунами, на пригодность для расчета гармонических постоянных, была оценка непрерывности поступления данных наблюдений за уровнем моря. Продолжительность рядов наблюдений должна быть не менее 32 суток – это главное требование для расчета гармонических постоянных методом Дудсона. Для расчета среднего уровня моря, а также для оценки годового хода гармонических постоянных, требуются годовые ряды непрерывных наблюдений над уровнем. По данным наблюдений за уровнем моря с использованием АП-цунами для шести станций ФГБУ «Приморское УГМС» (пункты Владивосток, Находка, Посьет, Преображение, Рудная Пристань и мыс Сосунова), отвечающих перечисленным требованиям, создан массив данных ежечасных наблюдений уровня за период с 2016 по 2023 г. Массив данных представлен в формате DDS.dat (рисунок 4.1).

4.2.2 Расчет и анализ гармонических постоянных

В рамках выполнения темы в 2024 г. были проанализированы ряды ежечасных наблюдений для шести выбранных станций, оборудованных АП-цунами, за 2023 год и рассчитаны гармонические постоянные волн прилива для каждого месяца. Среднее значение амплитуды и фазы за год определялось как медиана ряда ежемесячных значений гармоник. Полученные гармоники за 2023 г. сравнивались с их значениями, полученными за весь предшествующий период наблюдений. Результаты сравнения представлены в таблице 4.1: оказалось, что значения гармоник, полученных в 2023 г., не выходят за рамки их изменения за весь период наблюдений.

За среднее многолетнее значение гармонических постоянных волн прилива для каждой станции принималась медиана годового ряда среднемесячных значений амплитуды и фазы волны прилива, рассчитанных за весь период наблюдений, что позволило исключить из ряда осреднения выбросы, которые могут возникнуть из-за плохого качества исходных данных. В таблице 4.2 приведены среднемесячные величины амплитуды и фазы основных волн прилива, а также их среднемноголетние значения,

128

рассчитанные за период от начала наблюдений на каждой станции по 2023 г. включительно.

Преображение
42.54.0133.54.0
8760 60
2023 · · 1 · · 1 · · 0 · · 0 · · 0
186 · 188 · 193 · 193 · 191 · 191 · 188 · 188 · 188 · 185 · 193 · 188
196 · 197 · 195 · 196 · 190 · 194 · 187 · 181 · 178 · 181 · 177 · 174
184 ·186 ·184 ·187 ·190 ·193 ·190 ·188 ·186 ·192 ·193 ·196
198 · 200 · 201 · 201 · 200 · 193 · 193 · 185 · 179 · 176 · 177 · 174
176 · 180 · 182 · 188 · 195 · 195 · 193 · 189 · 193 · 193 · 193 · 197
197 · 198 · 200 · 201 · 197 · 199 · 194 · 194 · 188 · 181 · 180 · 174
177 ·180 ·184 ·187 ·194 ·194 ·194 ·197 ·197 ·199 ·196 ·196
197 · 198 · 202 · 201 · 208 · 203 · 200 · 194 · 190 · 184 · 180 · 175
177 · 178 · 178 · 186 · 192 · 192 · 195 · 199 · 200 · 201 · 198 · 200
197 ·201 ·199 ·205 ·210 ·205 ·206 ·198 ·196 ·189 ·184 ·186
177 ·180 ·180 ·185 ·190 ·198 ·202 ·205 ·207 ·201 ·202 ·201
200 - 203 - 203 - 209 - 214 - 213 - 213 - 210 - 208 - 203 - 198 - 191
185 · 182 · 183 · 185 · 192 · 197 · 203 · 204 · 207 · 206 · 204 · 204
203 · 204 · 208 · 208 · 211 · 214 · 212 · 214 · 208 · 205 · 196 · 189
187 · 183 · 182 · 184 · 188 · 194 · 197 · 201 · 202 · 207 · 207 · 203
202 - 203 - 201 - 203 - 206 - 209 - 215 - 214 - 212 - 207 - 200 - 193
187 · 184 · 183 · 182 · 184 · 188 · 195 · 198 · 204 · 203 · 204 · 203
201 · 201 · 199 · 201 · 204 · 208 · 208 · 209 · 208 · 207 · 200 · 189
187 · 184 · 177 · 177 · 178 · 185 · 186 · 194 · 194 · 200 · 198 · 200
200 · 201 · 196 · 197 · 202 · 205 · 208 · 211 · 209 · 208 · 203 · 199
194 ·188 ·184 ·184 ·185 ·189 ·191 ·197 ·200 ·201 ·210 ·204
207 - 207 - 200 - 203 - 200 - 204 - 202 - 210 - 203 - 210 - 206 - 204
201 · 195 · 190 · 194 · 192 · 187 · 189 · 197 · 204 · 210 · 201 · 203
205 - 203 - 204 - 205 - 200 - 204 - 202 - 206 - 208 - 213 - 208 - 212
205 - 196 - 201 - 195 - 188 - 191 - 201 - 206 - 206 - 209 - 214 - 212
210 - 214 - 211 - 208 - 206 - 207 - 208 - 210 - 210 - 211 - 212 - 205
208 · 204 · 199 · 199 · 197 · 195 · 190 · 201 · 201 · 202 · 203 · 207
207 ·207 ·202 ·199 ·196 ·189 ·190 ·201 ·197 ·200 ·196 °199

Рисунок 4.1 – Фрагмент массива ежечасных данных наблюдений уровня моря

Таблица 4.1 – Сравнение гармонических постоянных, полученных в 2023 г., с их средними и экстремальными значениями за весь период наблюдений

Ung		Амплит	гуда, см			Фаза,	град	
РІМЯ	Мин	Мед	иана	Marca	Мин	Мед	иана	Marca
волны	тин.	М	2023	IVIARC.	ллин.	М	2023	IVIAKC.
		Пун	кт Владиво	осток (М: 2				
Q1	0,9	1,2	1,0	1,4	163,3	172,0	178,6	190,5
01	4,8	5,0	5,1	5,4	191,1	192,8	195,3	198,1
K1	4,4	5,5	5,4	6,5	212,5	224,0	225,2	230,2
N2	1,5	1,7	1,7	1,8	163,5	170,8	177,3	175,3
P1	1,4	1,8	1,7	2,2	210,6	221,0	223,4	228,3
M2	7,2	7,4	7,5	7,9	180,7	188,1	190,5	192,1
S2	3,0	3,2	3,3	3,4	203,5	208,6	213,6	216,1
K2	0,8	0,9	0,9	0,9	205,4	210,5	215,4	217,7
		Π	ункт Наход	цка (<i>M</i> : 20	14-2022 гі	T.)		
Q1	0,9	1,1	1,1	1,2	167,7	176,4	182,4	190,3
01	4,7	4,9	4,9	5,3	195,3	197,8	199,9	200,1
K1	4,4	5,3	5,1	6,0	219,4	225,9	228,2	231,8
N2	1,2	1,3	1,4	1,6	172,3	178,2	181,4	182,9
P1	1,4	1,7	1,7	2	217,5	224,0	226,3	230,0

		Вы	сота		Фаза				
ИМЯ	м	Мед	иана	м	м	Мед	иана	м	
волны	Мин.	М	2023	Макс.	Мин.	М	2023	Макс.	
M2	5,6	5,8	5,9	6,2	194,8	197,8	198,1	198,4	
S2	2,2	2,4	2,4	2,7	214,9	220,0	220,0	222,4	
K2	0,6	0,7	0,6	0,7	216,8	221,9	221,9	224,3	
		Γ	Іункт Пось	ет (М: 201	6-2022 гг.	.)			
Q1	0,8	1,1	1	1,4	169,0	178,7	182,2	195,0	
01	4,6	5,0	5	5,2	193,4	197,2	198,4	200,8	
K1	4,2	5,5	5,65	7,1	217,6	225,9	222,0	240,1	
N2	1,5	1,8	1,8	1,9	175,7	177,7	180,4	180,1	
P1	1,4	1,8	1,9	2,4	216,1	224,0	220,3	238,2	
M2	7,2	7,6	7,75	8	192,5	194,1	195	197,3	
S2	3,0	3,2	3,35	3,7	214,0	216,6	217,2	226,8	
K2	0,8	0,9	0,9	1	216,0	218,5	220,2	228,8	
		Пункт	Рудная Пр	истань (М	1: 2016-20	22 гг.)			
Q1	0,9	1,2	1,3	1,5	162,4	167,9	166,1	179,6	
01	4,8	5,2	5,3	5,6	184,2	188,8	188,6	191,9	
K1	4,7	5,4	5,4	6,4	206,4	216,0	214,2	218,1	
N2	1,1	1,2	1,3	1,3	158,1	167,8	169,0	174,2	
P1	1,6	1,8	1,8	2,1	204,5	214,1	212,3	216,2	
M2	5,3	5,6	5,6	5,9	184,8	186,4	186,6	188,3	
S2	2,5	2,7	2,9	3,0	210,8	212,9	212,3	218,1	
K2	0,7	0,7	0,8	0,8	212,7	214,8	214,2	220,0	
		Пунн	кт Преобрах	кение (М:	2013-202	2 гг.)			
Q1	0,8	1,2	1,4	1,9	145,8	170,2	173,6	211,1	
01	4,7	5,3	5,1	5,5	185,1	190,1	191,8	194,8	
K1	4,4	5,5	5,3	6,4	206,8	218,8	219,9	229,2	
N2	1,5	1,8	1,8	2,1	203,7	216,0	218,0	227,3	
P1	1,0	1,5	1,6	2,3	149,2	167,6	170,7	179,8	
M2	5,5	6,5	6,0	6,9	183,2	184,3	185,7	190,4	
S2	2,5	2,7	2,9	2,9	205,6	209,2	208,8	218,7	
K2	0,7	0,7	0,8	0,8	207,5	211,1	210,7	220,6	
		Пу	нкт м. Сосу	инова (<i>M</i> : 1	2013-2022	с.)			
Q1	0,9	1,1	1,3	1,3	151,9	169,3	169,6	198,0	
01	4,5	4,8	4,7	5,0	181,0	185,9	188,2	191,3	
K1	4,2	5,1	5,0	5,8	199,9	210,6	213,0	219,5	
N2	0,4	0,4	0,4	0,7	180,3	201,6	223,8	275,3	
P1	1,4	1,7	1,7	1,9	198,0	208,8	211,1	217,6	
M2	2,5	2,6	2,6	2,6	186,8	193,2	195,3	201,4	
S2	1,7	1,8	1,9	1,9	212,8	215,6	219,4	235,4	
K2	0.5	0,5	0,5	0.5	214,7	216,9	221.3	237.3	

Продолжение таблицы 4.1

Примечание. М – медиана для периода до 2023 г.

Имя	январь	февраль	март	апрель	май	июнь	июль	август	сентябрь	октябрь	ноябрь	лекабрь	т
волны	лпрарь	φ υρ απο	mup 1			Internet		ubi jei	•••nimopb	oninopu	поморь	Aena op b	
	1			Пунк	т Владиво	сток (2016	6–2023 гг.)	: амплиту,	да, см			1	
Q1	1,2	1,2	1,2	1,2	1,0	0,8	1,0	1,0	1,1	0,9	1,4	1,3	1,2
01	5,1	5,0	4,9	5,4	5,3	5,1	4,9	4,8	5,1	4,9	4,8	5,0	5,0
K1	5,4	6,2	6,3	6,5	5,9	5,5	5,5	5,2	4,5	4,5	4,8	5,0	5,5
N2	1,9	1,8	1,7	1,7	1,6	1,5	1,6	1,7	1,6	1,8	1,7	1,7	1,7
P1	1,8	2	2,1	2,2	1,9	1,8	1,8	1,7	1,5	1,5	1,6	1,7	1,8
M2	7,6	7,8	7,7	7,7	7,5	7,3	7,2	7,0	7,1	7,4	7,3	7,4	7,4
S2	3,4	3,4	3,3	3,2	3,0	3,4	3,2	3,2	3,1	3,2	2,9	3,1	3,2
K2	0,9	0,9	0,9	0,9	0,8	0,9	0,9	0,9	0,9	0,9	0,8	0,8	0,9
	Пункт Владивосток (2016–2023 гг.): фаза, град												
Q1	177,0	163,2	173,9	179,8	167,4	172,8	172,1	178,9	174,8	190,5	184,1	170,1	174,4
01	195,3	191,5	191,5	193,6	195,2	194,5	195,8	192,8	196,5	197,3	197,7	196,8	195,3
K1	217,4	215,8	216,9	225,1	228,0	225,3	225,3	227,7	228,0	225,7	221,0	220,2	225,2
N2	172,2	174,6	172,7	174,5	177,0	160,5	174,6	171,3	174,4	174,3	175,6	171,2	174,4
P1	215,8	213,9	215,0	223,2	226,1	223,5	223,4	225,8	226,1	223,8	219,1	218,3	223,3
M2	188,2	186,5	188,4	187,3	189,1	190,5	190,3	191,0	191,9	191,7	189,0	187,8	189,1
S2	216,1	212,4	211,4	210,1	209,1	217,8	214,0	210,9	207,7	209,9	208,9	216,5	211,2
K2	217,7	214,3	213,3	212,0	211,0	219,7	215,9	212,5	209,6	211,8	210,7	218,4	212,9
				Пу	нкт Наход	ка (2014–2	2023 гг.): а	мплитуда	, см				
Q1	1,2	1,2	1,0	1,1	1,1	1,1	1,2	1,1	1,2	1,0	0,9	1,1	1,1
01	5,2	5,1	5,1	5,2	5,2	5,0	4,8	4,7	4,8	4,8	4,7	4,9	5,0
K1	5,1	5,7	6,0	6,0	5,6	5,4	5,1	5,3	4,7	4,4	4,6	4,8	5,2
N2	1,5	1,4	1,5	1,3	1,2	1,3	1,3	1,3	1,4	1,3	1,4	1,4	1,3
P1	1,7	1,9	2,0	2,0	1,9	1,8	1,7	1,7	1,6	1,4	1,5	1,6	1,7
M2	6,0	6,2	6,1	6,0	5,7	5,7	5,6	5,6	5,6	5,8	5,9	6,0	5,9
S2	2,7	2,6	2,5	2,4	2,2	2,4	2,4	2,3	2,5	2,5	2,4	2,5	2,4
K2	0,7	0,7	0,7	0,7	0,6	0,6	0,7	0,6	0,7	0,7	0,6	0,7	0,7
	Пункт Находка (2014–2023 гг.): фаза, град												
Q1	178,8	176,8	176,5	176,3	184,0	175,1	176,8	175,2	173,4	184,3	184,8	183,7	176,8

Таблица 4.2 Среднемесячные и среднегодовые значения гармонических постоянных за весь период наблюдений

Тродолжение таблицы 4.2													
Имя волны	январь	февраль	март	апрель	май	июнь	июль	август	сентябрь	октябрь	ноябрь	декабрь	т
01	197,1	197,1	199,4	198,1	198,6	200,3	197,2	196,6	197,5	200,1	200,1	198,3	198,2
K1	220,9	220,1	220,7	227,3	228,9	230,4	229,0	230,0	231,8	226,1	226,2	225,0	226,8
N2	179,9	180,0	179,8	182,9	177,0	177,4	178,1	176,6	172,4	178,1	180,6	178,2	178,1
P1	219,4	218,2	218,8	225,4	227,0	228,5	227,2	228,1	230,0	224,3	224,3	223,2	224,9
M2	196,0	195,9	196,5	197,9	198,1	197,8	196,6	198,0	198,2	198,3	198,4	197,1	197,9
S2	223,2	221,3	220,2	218,7	221,5	222,3	220,7	219,2	214,9	217,2	218,8	223,3	220,5
K2	224,8	223,2	222,0	220,6	223,4	224,2	222,6	221,1	216,8	219,1	220,6	225,2	222,3
Пункт Рудная Пристань (2017–2023 гг.): амплитуда, см													
Q1	1,2	1,5	1,2	1,3	1,2	1,2	1,2	1,2	1,3	0,9	1,2	1,1	1,2
01	5,3	5,2	5,0	5,4	5,4	5,2	5,2	5,0	5,0	5,0	5,1	5,0	5,2
K1	5,4	5,8	6,3	6,3	5,7	5,7	5,5	5,4	4,7	4,6	5,1	5,0	5,5
N2	1,2	1,2	1,4	1,2	1,1	1,1	1,1	1,3	1,2	1,3	1,3	1,2	1,3
P1	1,8	1,9	2,1	2,1	1,9	1,9	1,8	1,8	1,6	1,5	1,7	1,7	1,8
M2	5,8	5,9	5,9	5,8	5,7	5,4	5,5	5,3	5,5	5,6	5,6	5,5	5,7
S2	3,0	3,0	2,9	2,9	2,5	2,8	2,7	2,7	2,9	2,7	2,7	2,7	2,7
K2	0,8	0,8	0,8	0,8	0,7	0,8	0,7	0,7	0,8	0,7	0,7	0,7	0,7
				Пунк	т Рудная Г	Іристань (2017-2023	гг.): фаза	, град				
Q1	165,2	169,1	166,1	166,1	164,9	172,9	164,9	179,6	176,4	172,7	181,0	171,7	171,4
O1	187,1	186,1	190,7	187,9	188,3	189,8	188,9	187,0	190,4	188,4	189,9	189,8	188,0
K1	209,6	206,4	207,9	215,2	217,5	218,6	218,0	217,3	218,5	214,4	214,9	216,1	215,6
N2	166,1	172,9	172,8	170,2	178,5	158,6	166,9	167,8	164,6	165,9	164,7	166,9	166,4
P1	208,3	204,5	206,0	213,3	215,6	216,7	216,1	215,4	216,7	212,5	213,1	214,3	213,7
M2	185,3	185,8	186,1	184,9	185,4	186,6	186,5	188,1	187,3	187,5	187,5	186,1	185,7
S 2	215,4	212,4	211,9	212,2	211,3	216,8	213,0	210,8	210,6	213,2	212,0	215,2	213,0
K2	216,9	214,2	213,7	214,1	213,2	218,7	214,9	212,7	212,4	215,1	213,9	217,1	214,9
				Пункт	Преображ	сение (201	3-2023 гг.): амплиту	уда, см				
Q1	1,2	1,3	1,1	1,1	1,0	1,2	1,2	1,2	1,5	1,2	1,3	1,0	1,2
01	5,3	5,4	5,1	5,3	5,4	5,3	5,2	5,1	5,2	5,1	5,1	5,3	5,2
K1	5,4	5,7	6,0	6,5	6,0	5,7	5,6	5,5	5,0	4,4	5,0	5,0	5,6
P1	1,8	1,8	2,0	2,1	2,0	1,9	1,9	1,8	1,6	1,4	1,7	1,7	1,8
	132												

Продолже	ние табли	цы 4.2											
Имя волны	январь	февраль	март	апрель	май	ИЮНЬ	ИЮЛЬ	август	сентябрь	октябрь	ноябрь	декабрь	т
N2	1,6	1,5	1,6	1,5	1,4	1,4	1,4	1,4	1,5	1,6	1,6	1,6	1,5
M2	6,6	6,6	6,6	6,5	6,3	6,3	6,1	6,2	6,1	6,3	6,3	6,4	6,3
S2	2,9	2,9	2,8	2,7	2,5	2,6	2,7	2,7	2,7	2,7	2,7	2,8	2,7
K2	0,8	0,8	0,8	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
Пункт Преображение (2013–2023 гг.): фаза, град													
Q1	165,2	172,9	158,5	175,0	166,8	169,9	167,4	174,0	173,9	170,8	170,6	180,9	170,7
01	189,4	188,7	189,9	191,9	189,5	190,6	189,7	189,4	190,6	191,1	190,0	191,9	190,0
K1	213,6	207,6	208,8	216,9	218,8	220,0	218,9	221,6	220,7	215,0	218,6	218,0	218,3
P1	211,6	204,0	206,4	215,0	215,0	217,9	216,1	219,7	220,5	210,7	216,7	215,3	215,2
N2	163,4	175,5	170,6	171,1	171,1	163,5	162,6	163,9	161,2	163,6	160,2	162,4	163,5
M2	183,9	183,6	184,7	184,7	184,0	183,7	185,0	186,8	186,3	186,7	181,3	183,9	184,4
S2	211,9	207,5	208,5	207,5	209,0	211,7	210,0	208,7	202,4	201,3	205,8	210,8	208,6
K2	213,0	209,4	210,4	209,4	210,9	213,6	211,9	210,6	204,3	203,2	207,7	212,7	210,5
Пункт м. Сосунова (2013–2023 гг.): амплитуда, см													
Q1	1,2	1,1	1,1	1,3	1,1	1,15	1,1	1,05	1,0	1,1	1,1	1,2	1,1
01	4,6	5,0	4,6	5,1	4,8	4,9	4,9	4,7	4,8	4,7	4,9	4,5	4,8
K1	4,8	5,0	5,5	5,5	5,3	5,2	5,1	5,2	4,4	4,2	4,2	4,3	5,1
N2	0,5	0,4	0,4	0,3	0,4	0,4	0,3	0,4	0,5	0,6	0,5	0,5	0,4
P1	1,6	1,7	1,8	1,8	1,8	1,7	1,7	1,7	1,5	1,4	1,4	1,4	1,7
M2	2,5	2,6	2,5	2,7	2,7	2,7	2,5	2,6	2,6	2,6	2,6	2,6	2,6
S2	2,1	2,0	1,9	1,8	1,8	1,7	1,9	1,8	1,8	1,8	1,8	1,7	1,8
K2	0,6	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
				Пу	нкт м. Сос	унова (20	13-2023 гі	г.): фаза, г	рад				
Q1	156,4	161,5	185,7	166,2	166,4	168	171,3	167,8	177,0	177,2	168,0	169,6	168,0
01	184,3	182,8	186,9	184,1	187,9	185,4	186,1	184,9	189,2	185,1	190,2	188,2	185,8
K1	204,2	198	201,4	207,5	211,1	212,1	211,9	216,0	220,2	213,5	211,5	210,8	211,3
N2	205,0	210,1	217,0	217,7	209,4	195,8	197,2	192,6	181,8	197,0	200,6	208,6	202,8
P1	202,6	196,1	199,5	205,6	209,2	209	209,3	216,5	216,9	210,5	209,7	208,9	209,1
M2	194,7	191,1	194,8	191,6	194,0	189,4	190,7	188,2	194,4	194,3	194,1	196,6	194,1
S2	221,3	214,9	213,0	213,6	218,5	219,5	220,9	217,1	213,5	211,6	214,4	219,5	216,0

		1											
Имя волны	январь	февраль	март	апрель	май	ИЮНЬ	ИЮЛЬ	август	сентябрь	октябрь	ноябрь	декабрь	т
K2	222,8	216,8	216,8	215,4	220,4	221,3	222,8	219,0	213,7	213,5	216,3	221,4	217,9
	Пункт Посьет (2016–2023 гг.): амплитуда, см												
Q1	1,1	1,2	1,1	0,9	1,1	1,0	1,1	1,1	1,1	0,9	1,0	1,4	1,1
01	5,1	5,2	4,9	5,1	5,2	5,0	4,9	4,7	5,0	4,7	5,0	4,9	5,0
K1	5,6	6,3	6,9	6,5	5,9	5,5	5,3	5,1	4,3	4,3	5,2	5,4	5,5
N2	1,9	1,9	1,8	1,7	1,5	1,7	1,7	1,8	1,7	1,7	1,8	1,8	1,8
P1	1,9	2,1	2,3	2,2	2,0	1,8	1,8	1,7	1,4	1,4	1,7	1,8	1,8
M2	7,6	7,9	8,0	7,7	7,5	7,5	7,3	7,4	7,4	7,5	7,6	7,9	7,6
S2	3,7	3,6	3,4	3,2	3,1	3,1	3,3	3,3	3,2	3,2	3,1	3,2	3,2
K2:	1,0	1,0	0,9	0,9	0,8	0,8	0,9	0,9	0,9	0,9	0,8	0,9	0,9
					Пункт Пос	сьет (2016-	-2023 гг.):	фаза, град	Į				
Q1	173,7	167,1	178,6	176,9	183,7	179,3	179,1	195,0	186,3	198,7	188,7	177,8	179,2
01	197,2	193,8	194,7	194,3	196,2	197,9	198,2	197,2	199,2	197,9	199,9	198,9	197,5
K1	218,3	218,7	221,2	229,8	230,4	229,8	230,2	230,4	236,1	220,0	222,2	221,9	226,0
N2	177,8	176,6	176,3	180,9	179,5	178,6	178,8	179,1	176,2	179,9	178,4	177,8	178,5
P1	216,7	217,2	219,3	227,9	228,5	227,9	228,3	228,5	234,2	218,1	220,3	220,0	224,1
M2	192,6	192,5	193,0	194,8	194,1	194,8	195,4	195,5	197,3	196,6	194,1	192,3	194,4
S2	225,7	217,9	216,1	215,5	215,2	218,6	217,3	216,4	214,5	215,9	219,0	226,9	216,9
K2:	225,7	219,5	218,0	217,4	217,1	220,4	219,2	218,3	216,4	217,8	220,9	228,8	218,8

Продолжение таблицы 4.2

Примечание. *т* – среднегодовое значение.

По рассчитанным за весь период наблюдений среднемесячным значениям амплитуды и фазы приливных волн для шести выбранных станций построены графики их годового хода (рисунок 4.2, 4.3). В годовом ходе амплитуды волны К1 для всех станций наблюдается заметный сезонный ход в 1,5-2 см с максимумом в марте, апреле и минимумом в сентябре и октябре. Сезонные изменения также заметны в годовом ходе амплитуды волны M2, что наиболее характерно для пунктов Владивосток и Посьет, размах колебаний не превышает 1 см (рисунок 4.2*a*, 4.2*e*).

Из анализа годового хода фазы основных волн прилива для всех станций, кроме пункта мыс Сосунова, сезонные изменения отмечаются для волн К1, Р1 (рисунок 4.3). Увеличение значений фазы до 10° наблюдается с апреля по сентябрь. Для пункта мыс Сосунова (рисунок 4.3*д*) рост фазы отмечается с февраля по сентябрь и составляет более 20°. Кроме того, для этого пункта отмечаются значительные годовые изменения фазы волны N2 от 217,7 ° в апреле до 188,8° в сентябре. Основная причина значительных колебаний фазы приливной волны здесь, как уже было отмечено в промежуточных отчётах, нерепрезентативное место установки АП для проведения наблюдений за уровнем моря. Данные наблюдений, полученные для пункта мыс Сосунова не могут быть использованы для расчета ГП.

4.2.3 Средний уровень моря

При изучении приливов важно определение того уровня, около которого совершаются приливные колебания, т.е. среднего уровня моря. Величина среднего уровня вычисляется из наблюдений по его средним многолетним значениям. Наименьшим периодом времени наблюдений, необходимым для определения среднего уровня, считается 9 лет, что соответствует половине периода лунного цикла [71]. В практике предвычисления приливов, чтобы исключить периодические изменения уровня, за среднюю его величину принимается среднеарифметическое из непрерывных ежечасных отсчетов высоты уровня за 19 лет (18,6 года – продолжительность лунного цикла) [72]. В настоящей работе, исходя из полноты наблюдений, полученных на АП-цунами, для расчета среднего уровня моря взят период наблюдений с 2016 по 2023 г.

На основе ежечасных данных, полученных на АП-цунами, установленных на шести станциях Приморского УГМС, были рассчитаны среднемесячные значения уровня моря для каждого года; по ним получены среднемесячные значения за весь период наблюдений и их среднегодовое значение (таблица 4.3). На рисунке 4.4 представлены графики сравнения годового хода уровня моря за отдельные годы с его среднемноголетними значениями.

135

Таблица 4.3 – Среднемесячные и среднемноголетнее значение уровня моря за период наблюдений 2016–2023 гг. на станциях, оборудованных АП-цунами

Пункт	январь	февраль	март	апрель	май	июнь	июль	август	сентябрь	октябрь	ноябрь	декабрь	т
Отметки уровня приведены единому нулю поста (-5,00 м, БС1977)													
Владивосток	394,1	392,6	397,4	399,0	408,5	419,1	420,7	424,9	416,6	401,9	398,3	390,9	405,6
Находка	400,4	398,0	402,0	404,8	412,5	419,4	420,5	427,9	415,1	406,5	401,9	397,6	408,9
Посьет	389,4	390,7	394,4	396,4	406,5	413,6	419,0	424,1	413,1	398,4	394,8	387,2	402,5
	Отметки уровня не приведены единому нулю поста												
Преображение	202,8	201,8	201,3	203,9	212,3	218,4	221,5	224,6	211,8	203,9	203,6	199,9	208,8
Рудная Пристань	364	364,2	363,5	367,1	371,4	382,6	375,1	382,6	378,4	372,7	362,8	362,4	370,6
Мыс Сосунова*	218,2	214,6	218,5	221,2	223,1	226,5	230,3	227,4	232,8	221,4	224,7	216,9	

Примечание. *т* – среднегодовое значение, БС1977 – Балтийская система высот 1977 г.

Q1, O1, K1, N2, P1, M2, S2 и K2 – имена волн Рисунок 4.2 – Годовой ход среднемноголетних значений амплитуд основных волн прилива

Для Владивостока, Находки, Посьета с 2020 года за единый ноль поста принята отсчетная поверхность на 5,0 м ниже нуля Балтийской системы отсчета 1977 г., все данные, полученные до 2020 г., приведены с помощью поправки к единому нулю поста. Для Владивостока, Находки и Посьета поправки составили соответственно 325, 365 и 250 см.

На графиках (рисунок 4.4) приведены кривые годового хода уровня для этих станций за период наблюдений с 2017 по 2023 г. Данные наблюдений за 2016 год были исключены из осреднения, т.к. вызывают сомнения из-за некорректной работы датчиков уровня. В промежуточных отчетах 2020 и 2021 гг. было отмечено, что при длительной эксплуатации датчиков АП-цунами теряется их чувствительность, что ведет к уменьшению регистрируемых приливных колебаний уровня моря и их запаздыванию относительно фактического прилива. Кроме того, происходит сглаживание сейшевых колебаний уровня моря.

Q1, O1, K1, N2, P1, M2, S2 и K2 – имена волн Рисунок 4.3 – Годовой ход среднемноголетних значений фаз основных волн прилива

Чтобы оценить изменение годового хода среднего уровня моря в отдельные годы по сравнению с его среднемноголетними значениями, было рассчитано стандартное отклонение величины среднего уровня за каждый месяц (таблица 4.4). Для Владивостока стандартное отклонение уровня моря от его среднемноголетнего значения составляет 1,8 см, максимальное отклонение 5,8 см отмечено в сентябре, для Находки – 2,7 (максимум – в августе и сентябре – 6,8 и 6,2 см), для Посьета – 1,8 см (август, 6,5 см).

Значительное отклонение среднего уровня моря в летний период от среднемноголетних значений можно объяснить недостаточной продолжительностью наблюдений над уровнем для корректного определения его среднемноголетних величин. В отдельные годы в связи с выходом тайфунов в летние месяцы наблюдался существенный подъем уровня моря, например, в августе 2020 г. в пункте Находка среднемесячное значение уровня превысило его среднемноголетнее – на 15 см, в 2023 г. в пункте Посьет – на 10 см.

Для трех станций, не имеющих привязки к «нулю» поста, более стабильные значения среднего уровня моря от года к году характерны для пункта Преображение, в

138

отдельные месяцы стандартное отклонение изменяется от 2 до 6,6 см. (таблица 4.4). В пункте Рудная Пристань положение среднего уровня значительно меняется от года к году. Вполне очевидно, что в разные годы отсчеты велись от разных отсчетных поверхностей, а поскольку нет привязки к единому нулю, невозможно сопоставить между собой измерения, проведенные в разные отрезки времени. По данным, полученным с АП Рудная Пристань к настоящему времени значения среднего уровня относительно стабильны только последние 4 года (с марта 2020 г. по 2023 г. включительно).

Рисунок 4.4 – Сравнение годового хода уровня моря за отдельные годы со средними многолетними значениями

Для станции мыс Сосунова, как и в случае с Рудной Пристанью, значения среднего уровня моря от года к году значительно меняются (рисунок 4.4). Поскольку нет привязки к единому нулю поста, сравнить эти величины невозможно, как и рассчитать величину среднего многолетнего уровня для пункта мыс Сосунова по данным, полученным с АП. Таким образом, для станций Преображение, Рудная Пристань полученные значения среднего уровня приблизительны, а для пункта мыс Сосунова средний уровень определить не представляется возможным без привязки к нулю поста.

Пункт	январь	февраль	март	апрель	май	ИЮНЬ	ИЮЛЬ	август	сентябрь	октябрь	ноябрь	декабрь	т
Владивосток	2,0	4,0	6,2	4,6	2,0	3,4	3,6	3,2	5,8	2,7	3,5	2,0	1,8
Находка	2,9	3,7	6,1	3,7	2,9	3,6	4,1	6,8	6,2	4,5	3,8	2,7	2,7
Посьет	2,5	2,4	4,1	3,4	2,1	3,2	4,2	6,5	5,8	4,2	3,1	3,8	1,9
Преображение	2,7	4,7	6,4	6,6	5,0	3,8	1,4	5,3	6,3	5,7	3,3	5,2	3,6

Таблица 4.4 – Стандартное отклонение среднемесячных значений уровня моря от его среднемноголетних величин

Примечание. *т* – среднегодовое значение.

4.2.4 Уточнение и пополнение каталога ГП по зарубежным водам Тихого океана

Для уточнения и пополнения каталога гармонических постоянных по зарубежным водам Тихого океана проведен анализ материалов наблюдений за уровнем моря по иностранным источникам, были использованы английские адмиралтейские Таблицы приливов Admiralty Tide Tables (ATT), содержащих гармонические постоянные, за 2024 год. На основе ATT [73] уточнены значения поправок высот и времени прилива для пяти основных и 180 дополнительных пунктов. Пересчитаны коэффициенты прилива для дополнительных пунктов, для которых изменились значения поправок прилива. Уточнены значения среднего уровня моря для основных и дополнительных пунктов. Все уточнения учтены при расчете Таблиц приливов по зарубежным водам Тихого океана на 2026 г.

4.3 Программный комплекс обработки рядов наблюдений над уровнем моря

4.3.1 Значимость сведений об экстремальных значениях уровня

На морском побережье сгонно-нагонные явления могут формировать подъемы уровня воды до экстремальных отметок и причинять значимый экономический ущерб (нарушить инфраструктуру населенных пунктов, вызвать повреждения на портовых сооружениях, представлять опасность для жизни и здоровья людей). Изучение статистики изменения уровня моря необходимо для выявления причин формирования рассматриваемых явлений; сведения о периоде повторяемости подъёмов уровня воды необходимы при проведении инженерных изысканий для проектирования прибрежных гидротехнических и портовых сооружений.

Изменения уровня моря при возникновении сгонно-нагонных событий формируются при прохождении атмосферных явлений над акваториями морей, не меньший вклад вносят особенности морфологии рельефа: мелководные зоны и сужения способствуют подъему уровня до критических отметок. В суммарный уровень моря значимый вклад вносит детерминированная приливная составляющая; преодоление уровнем критических отметок при сгонно-нагонном явлении будет зависеть от совпадения времени прохождения атмосферного процесса со временем наступления сизигийного или квадратурного прилива.

Построение вероятностной модели на основе аппарата статистики экстремальных значений, с использованием которой можно рассчитывать обеспеченные оценки периодов повторяемости величины уровня на интервале до ста лет, возможно с использованием длительных рядов наблюдений над уровнем моря на сети прибрежных станций.

141

4.3.2 Исходные данные наблюдений станций ДВ региона

Для проведения анализа использованы данные наблюдений над уровнем моря со станций, расположенных на побережье Японского моря, а также данные из открытых Гавайского ресурсов _ центра уровня моря университета (UHSLC: http://uhslc.soest.hawaii.edu/), архива данных Международной Океанографической Комиссии (IOC sealevel system: http://www.ioc-sealevelmonitoring.org/index.php) и с сети станций Дальневосточного региона, накопленных в ВНИИГМИ-МЦД. Расчеты экстремальных повышений и понижений уровня заданной обеспеченности выполнены для станций расположенных на побережье РФ и Японии: Владивосток, Находка, Холмск, Углегорск, Вакканай, Хакодате, Тояма и Хамада. Характеристики распределений рядов ежечасных уровней представлены в таблице 4.5. Максимальная изменчивость колебаний уровня в Японском море наблюдется в северной части акватории для поста Углегорск и в Сангарском проливе для поста Хакодате (соответственно $\sigma = 24,4$ и 23,7 см). Для постов Углегорск и Хакодате, амплитуда волны прилива М2 максимальна.

Станция	Период	σ cM	~	c
Станция	данных, гг.	0, CM	Ŷ	3
Владивосток	1983–2024	16,7	0,138	-0,0456
Находка	2004-2024	15,3	0,140	-0,0005
Холмск	1977-2020	12,0	0,250	0,7700
Углегорск	1977-2012	24,4	0,016	-0,3506
Вакканай	1967-2021	14,7	0,003	0,0570
Хакодате	1969–2023	23,7	-0,233	-0,3512
Тоя́ма	1968–2022	16,7	-0,056	-0,3090
Хамада	1985-2023	20,1	0,119	-0,2501

Таблица 4.5 Характеристики распределения ежечасных значений уровня станций

Примечание. σ – среднеквадратическое отклонение, γ – коэффициент асимметрии, є – эксцесс распределения.

4.3.3 Расчет повторяемости годовых экстремальных значений уровня

Расчет экстремальных значений уровня моря редкой повторяемости с периодом на интервале 0–100 лет производится с использованием придельного распределения первого типа Гумбеля [74]. В основе статистики экстремальных значений лежит двойной показательный закон (4.1)

$$P = e^{-e^{-y}} \tag{4.1}$$

где *Р* – функция распределения,

у – приведенная переменная экстремальных значений.

Приведенная переменная связана с периодом повторяемости соотношением (4.2):

$$y = -\ln\ln\left(\frac{T}{T-1}\right) \tag{4.2}$$

где Т – период повторяемости в годах.

Эмпирические вероятности превышения рассчитываются по формуле Вейбулла (4.3):

$$P_i = \frac{i}{N+1} \tag{4.3}$$

где *i* – порядковый номер экстремума в ранжированной по величине значений выборке,

N – общее количество членов ряда.

В соответствии с теорией экстремальных значений двойной показательный закон может быть представлен в виде трех типов придельных распределений экстремумов линейного – Гумбеля (4.4) и нелинейного – Фреше и Вейбулла характера зависимости приведенной переменной у и статистической переменной *х*:

$$P_{I}(x) = Exp(-e^{-a(x-u)})$$
(4.4)

Максимумы превышения заданной вероятности могут быть рассчитаны с использованием соотношения (4.5), полученного из распределения первого типа (4.4):

$$X_{P_I} = u + \frac{1}{a} y_p \tag{4.5}$$

где *и* и *а* – параметры первого придельного распределения.

Эмпирические функции распределения максимальных для поста Углегорск и минимальных годовых значений уровня моря для поста Вакканай аппроксимируются первым предельным распределением (рисунки 4.5, 4.6). Значения максимальных и минимальных уровней моря повторяемости один раз в 5, 10, 25 и 50 лет, рассчитанные относительно среднего уровня моря в пункте, приведены в таблицах 4.6 и 4.7.

Рисунок 4.5 – Кривая обеспеченности максимальных годовых значений уровня моря в пункте Углегорск (1977–2012 гг.) в системе «Единого» ноля постов, аппроксимированная первым предельным распределением

Рисунок 4.6 – Кривая обеспеченности минимальных годовых значений уровня моря в пункте Вакканай (1967–2021 гг.) относительно среднегодового уровня, аппроксимированная первым предельным распределением

	U /	()
-1 and -3 and $-$	Whodueu (CM
$1 a_{\text{OIIII}} = \text{OIII} = \text{OIII} = \text{OIIII} = \text{OIIIII} = OIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	ypoblich (UNI J
		· /

Н	Владивосток	Находка	Холмск	Углегорск	Вакканай	Хакодате	Тоя́ма	Хамада
H_{max}^5	67,7	64,4	66,9	87,6	58,5	75,2	52,7	68,9
H_{max}^{10}	75,9	70,7	77,5	93,2	64,8	80,3	57,3	77,3
H_{max}^{25}	86,3	78,6	90,9	100,2	72,8	86,6	62,9	87,9
H_{max}^{50}	94,0	84,5	100,8	105,4	78,8	91,3	67,2	95,8

Примечание. H – повторяемость, H_{max}^5 , H_{max}^{10} , H_{max}^{25} , H_{max}^{50} – повторяемость соответственно раз в 5, 10, 25, 50 лет.
Н	Владивосток	Находка	Холмск	Углегорск	Вакканай	Хакодате	Тоя́ма	Хамада
H_{min}^5	-55,6	-51,3	-44,9	-84,2	-50,9	-75,6	-53,4	-71,0
H_{min}^{10}	-58,4	-56,9	-49,6	-91,2	-55,9	-78,3	-57,5	-77,2
H_{min}^{25}	-62,0	-64,0	-55,5	-99,9	-62,3	-81,8	-62,6	-85,0
H_{min}^{50}	-64,7	-69,3	-59,9	-106,4	-67,0	-84,3	-66,4	-90,7

Таблица 4.7 – Значения годовых минимальных уровней (см)

Примечание. H – повторяемость, H_{min}^5 , H_{min}^{10} , H_{min}^{25} , H_{min}^{50} – повторяемость соответственно раз в 5, 10, 25, 50 лет.

Наибольшие значения годовых максимумов превышения уровня характерны для станций, расположенных в северной части акватории Японского моря (Холмск, Углегорск). Для большинства пунктов распределение ежечасных уровней ассиметрично и, как следствие, величина минимальных экстремальных значений уровня по модулю имеет меньшие величины в сравнении с величиной максимальных экстремумов при равном периоде повторяемости. Исключением является пункт Углегорск, для которого величины экстремальных характеристик уровня имеют близкие значения по модулю.

ЗАКЛЮЧЕНИЕ

Запланированные на 2024 г. работы по систематизации и анализу данных, в соответствие с Государственным заданием, выполнены полностью. На основе проведенных наблюдений, анализа и расчетов можно сделать следующее заключение.

- В процессе работы систематизированы и реструктурированы данные по факторам среды (содержание загрязняющих веществ и органического углерода в донных отложениях) и количественным характеристикам макрозообентоса, сгруппированы опубликованные и неопубликованные авторами результаты и материалы, полученные в рамках выполнения НИР (2020–2023 гг.).
- 2) Для станций ОГСН на прибрежной акватории Владивостока выполнена экстраполяция данных на периоды, когда измерение ЗВ не производили (11 из 27 станций). В большинстве случаев наилучшие результаты аппроксимации достигались линейными функциями, в двух полиномиальными и в одном экспоненциальной. Объясненная дисперсия почти во всех вариантах превысила 70 % ($r^2 = 0,721-0,927$, p = 0,000) и лишь для станции Z23 она оказалась слегка ниже ($r^2 = 0,675$, p = 0,000). Таким образом, результаты этой процедуры оказались весьма успешными и позволили заполнить временные пропуски у 41 % точек опробования;
- 3) Показано, что набор ЗВ, которые следует использовать при вычислении индекса *TPF*_{chem} (общий уровень химического загрязнения) для залива Находка, заметно отличается от такового для прибрежных акваторий Владивостока (общие углеводороды – ОУ, фенолы, сумма ДДТ и его метаболитов – ΣДДТ, медь и свинец) и включает, кроме ОУ, ΣДДТ и Сu, хром и цинк. В связи с этим была произведена калибровка *TPF*_{chem} для этого района относительно *TPF*_{chem}, определяемого по стандартному набору 3В;
- 4) На основе данных натурных наблюдений над концентрациями ЗВ и их корректировки, учитывающей тип грунта, а также результатов экстраполяции и калибровки были построены карты распределения *TPF*_{chem} с указанием значений ПДУ_{10d}, ПДУ₁₀, пороговых величин *ERL*_q, *ERM*_q и *ERD*_q. Для прибрежной акватории Владивостока эти карты включают весь период наблюдений (1982–2022 гг.), для залива Находка затрагивают временной отрезок с 2010 по 2022 гг.;
- 5) Показано, что в 1982–1985 гг. общий уровень загрязнения донных отложений (и соответственно морской среды) был ниже ПДУ₁₀ и даже ниже ПДУ₁₀ для десятиногих раков почти на всей акватории Амурского и Уссурийского заливов (в Уссурийском заливе до 1987 г., включительно), за исключением прибрежья Владивостока. Затем экологическая ситуация последовательно ухудшалась вплоть до 2010 г., когда *TPF*_{chem}

превысил *ERL*_q на большей части исследованной акватории, а во всей прибрежной зоне полуострова Муравьева-Амурского – и *ERM*_q. В результате, оба залива оказались малопригодными для обитания подавляющего большинства донных гидробионтов.

- 6) К 2015 г. качество морской среды в районе мониторинга существенно улучшилось, что особенно заметно для Уссурийского залива, уровень загрязнения упал ниже *ERL*_q, а на части его акватории и ниже ПДУ₁₀. Вероятно, это произошло из-за сдачи в эксплуатацию очистных сооружений, а также закрытию свалки в бухте Горностай (Уссурийский залив) и сооружению над ней саркофага. В дальнейшем, общая ситуация с загрязнением донных отложений сохранялась примерно на одном уровне, но испытывала существенные пространственно-временные флуктуации;
- 7) Как и на прибрежной акватории Владивостока, общий уровень химического загрязнения осадков в заливе Находка подвержен значительным пространственновременным колебаниям. Существенное и экстремальное загрязнение (соответственно выше ERM_q и ERD_q) характерно для бухт Находка и Врангеля. В остальной части залива TPF_{chem} варьировал в диапазоне от ПДУ₁₀ до 3,39 усл. ед., превышая ERM_q , но обычно – в пределах ERL_q – ERM_q . Следовательно, качество морской среды в данном районе далеко от благополучного уровня для большинства гидробионтов, хотя степень снижения ее статуса (в экстремуме) явно не столь существенна, как у Владивостока;
- 8) Разработаны рекомендации для применения методов установления ПДУ, пороговых величин ERL_q, ERM_q и ERD_q, которые включают таковые для выделения основного фактора загрязнения и определения загрязняющих веществ, используемых при вычислении TPF_{chem}, и его построения этого индекса, а также для первичного определения указанных критериев и доказательства полученной величины ПДУ;
- 9) Испытание методов оценки экологического состояния морской среды на основе анализа сообществ макрозообентоса и определения допустимого уровня химического загрязнения осадков показало их применимость на любой акватории. Они позволяют кратко и наглядно оценивать состояние донного населения и пригодности морской среды для его обитания, но требуют наличия данных о концентрациях загрязняющих веществ в грунтах искомой акватории и их предварительного статистического исследования методами факторного анализа с последующей калибровкой полученного индекса общего загрязнения осадков;
- 10) На основе ранее опубликованных материалов показано, что для анализа экологического состояния и степени повреждения донного населения необходимо и достаточно применение всего пяти интегральных характеристик – индексов *TPF*_{bio}, *AMBI* и *M-AMBI*, ПЭС и W-статистики. Применение индекса *TPF*_{bio} в настоящий момент

147

ограничено заливом Петра Великого, так как для остальных акваторий, рассматриваемых в настоящем Отчете, не существует классификации донных животных по отношению к загрязнению;

- 11) Перечисленные параметры использованы для оценки экологического состояния и качества морской среды на прибрежной акватории Владивостока, в Двинском, Кандалакшском и Онежском заливах Белого моря, а также на Венинском полигоне и вблизи трех нефтегазодобывающих платформ (ПА-А, ПА-Б и Лун-А, прибрежье острова Сахалин, Охотское море);
- 12) Показано, что наиболее неблагоприятная экологическая ситуация сложилась в прибрежной зоне Владивостока, а остальные акватории находятся в почти интактном состоянии с незначительным понижением качества морской среды вблизи непосредственных источников поступления загрязняющих веществ с промышленными и бытовыми стоками. В Белом море – это кутовые части Двинского, Кандалакшского и Онежского заливов, на Венинском полигоне – его самая прибрежная часть. В районе платформы Лун-А – это область акватории к северу от нее с удалением 10 и более км, около ПА-А – внутри радиуса 500 м, вблизи ПА-Б – в радиусе 500–1000 м и на угловых станциях лицензионной площади;
- 13) Причинами снижения качества морской среды у Владивостока является жесткое комплексное действие загрязнения и эвтрофикации на фоне резкого уменьшения концентраций растворенного кислорода в летний период, на остальных акваториях – особенности придонной физической среды, которые способствуют или препятствуют накоплению частиц алевропелитовых фракций, обогащенных различными 3В;
- 14) В то же время, именно эти особенности (высокая гидро- и литодинамическая активность, тип грунта, продолжительность осушки и т.п.) в интактных или почти интактных районах являются факторами, обуславливающими экологическое состояние сообществ макрозообентоса. Или, иными словами, в таких районах основными факторами дифференциации группировок донных животных являются природные, а не антропогенные факторы среды;
- 15) На основе этих наблюдений разработаны схема и рекомендации для анализа экологического состояния морской среды, которая включает аут- и синэкологический подходы. Первый – достаточен для получения заключения об экологическом состоянии и степени повреждения искомой акватории. Второй – необходим для истолкования полученных результатов и выяснения причин ухудшения или улучшения экологической ситуации;

148

- 16) В целом, апробацию адаптированных и разработанных методов анализа состояния морской среды с позиций биоиндикации на основе использования макрозообентоса следует признать успешным. Аутэкологические биотические индексы AMBI, M-AMBI и синэкологический показатель экологического стресса (ПЭС) возможно использовать на любой акватории, хотя для первых двух параметров желательна адаптация к видовому составу макрозообентоса искомого района. К сожалению, индекс TPF_{bio} в настоящее время можно использовать только для залива Петра Великого, а расширение области его применения на другие районы требует обширных предварительных исследований;
- 17) Результатами работ по теме 4.6.4 в 2024 г., произведённых в рамках выполнения функций регионального центра океанографических данных по ДВ региону, являются:
- Региональная БД по дальневосточным морям, дополненная результатами 2023 г., включающими данные о гидролого-гидрохимическом состоянии, уровне загрязнения морской среды и гидробиологические параметры в контролируемых прибрежных и фоновых районах залива Петра Великого (Японское море);
- Переведенные в электронный формат с бумажных носителей исторические данные экспедиционных и мониторинговых исследований по программе ОГСН в заливе Петра Великого за 2004 г.;
- Переданные в ФГБУ «ГОИН» для пополнения БД «Загрязнение морей» электронные массивы MS-Excel с данными за 2004 и 2023 гг.;
- 18) В рамках работы по теме 4.6.14 сформированы массивы наблюдений ежечасных уровней моря в формате DDS.dat за период с 2016 по 2023 г. для шести станций, оборудованных АП-цунами (пункты Владивосток, Находка, Посьет, Преображение, Рудная Пристань и мыс Сосунова). На основе данных по уровню моря рассчитаны гармонические постоянные основных волн прилива и средний уровень моря для каждой станции, проанализированы их изменения за весь период наблюдений;
- 19) Годовой ход гармонических постоянных основных волн прилива за отдельные годы для всех станций, кроме пункта мыс Сосунова, близок к их среднемноголетним значениям, рассчитанным за период с 2016 по 2023 годы. Для мыса Сосунова отмечаются значительные годовые изменения фазы отдельных волн прилива. Данные наблюдений для станции мыс Сосунова не могут быть использованы для расчета ГП из-за не репрезентативности места установки АП для проведения наблюдений над уровнем моря;
- 20) Средний уровень моря имеет устойчивый годовой ход для станций, имеющих привязку к нулю поста. Для станций мыс Сосунова, Рудная Пристань значения

среднего уровня значительно меняются от года к году. Поэтому, при отсутствии привязки к единому нулю поста, рассчитать величину среднего многолетнего уровня невозможно;

- 21) Данные уровня моря, полученные на АП-цунами к настоящему времени, из-за нестабильной работы датчиков, а также из-за отсутствия привязки к единому нулю поста не позволяют сохранить преемственность наблюдений над средним уровнем моря. Отдельные годовые серии наблюдений за уровнем можно использовать для расчета гармонических постоянных волн прилива при условии строгого контроля работы датчиков;
- 22) Уточнены значения среднего уровня моря для основных и дополнительных пунктов по зарубежным водам Тихого океана. Все уточнения внесены в Таблицы приливов по зарубежным водам Тихого океана на 2026 г. Подготовлены и переданы в издательство Таблицы приливов по Азиатским водам России и зарубежным водам Тихого океана на 2026 г. (три тома);
- 23) Определен тип и необходимый порядок цифрового фильтра для обеспечения требуемых амплитудно-частотных характеристик при производстве гармонического анализа. Наиболее пригодными для обработки рядов уровня моря являются фильтры с Конечной Импульсной Характеристикой (не рекурсивные), поскольку обладают простой схемой построения, линейностью фазово-частотной характеристики, не вносят искажения в результаты расчета характеристик волн прилива;
- 24) Применение полосовых цифровых фильтров в гармоническом анализе позволяет реализовать пакетный счет характеристик ГП. За счет уменьшения размерности систем линейных уравнений, путем включения только определенных волн, повышается эффективность использования численных мощностей;
- 25) Реализован программный комплекс по обработке рядов наблюдений над уровнем моря, позволяющий производить предварительную обработку данных наблюдений методами цифровой фильтрации, выполнять гармонический анализ с определением характеристик волн прилива методами Дудсона и МНК, формировать Таблицы приливов;
- 26) Для постов наблюдения за уровнем моря, расположенных на побережье Японского моря, рассчитаны годовые экстремальные величины суммарных уровней моря редкой повторяемости один раз в 5, 10, 25 и 50 лет, величина минимальных экстремальных значений уровня по модулю превосходит величину максимальных по причине асимметричности распределения рядов наблюдений.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Отчет ФГБУ «ДВНИГМИ» «Разработка метода определения допустимого уровня химического загрязнения осадков на основе структурных изменений макрозообентоса». — 2023. — 91 с. — URL: http://ferhri.org/images/stories/FERHRI/NIR/Otchety/otchet_4.6.2_2023_moschenko.pdf (дата обращения 27.11.2024).

Черкинский С.Н., Красовский Г.Н. Нормативы гигиенические // Большая медицинская энциклопедия: в 30 т. / гл. ред. Б.В. Петровский. — 3-е изд. — М.: Советская энциклопедия, 1981. — Т. 17: Ниландера — Проба. — С. 73—74. — 512 с.

3. Словари и энциклопедии на Академике // URL: https://dic.academic.ru/dic.nsf/ ruwiki/1396901. Дата обращения: 19.07.2023.

4. Экология (справочник) // URL: https://ru-ecology.info/index/. Дата обращения: 19.07.2023.

5. Эко-словарь // URL: http://www.ecocommunity.ru/term.php?id=1635. Дата обращения: 19.07.2023.

6. Красилов В.А. Охрана природы: принципы, проблемы, приоритеты. — М.: Институт охраны природы и заповедного дела, 1992. — 174 с.

7. Circular on target values and intervention values for soil/sediment redemption. Spatial Planning and Environment of Netherlands. — Ministry of Housing, 2000. — 75 p.

8. Buchman M.F. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08–1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 2008. — 34 p.

9. Long E.R, MacDonald D.D., Smith S.L., Calde, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments // Environ. Management. — 1995. — Vol. 19. — P. 81—97.

10. Boyd J., Baumann J., Hutton K., Bertold S., Moore B. Sediment quality in Burrard inlet using various chemical and biological benchmarkers // Burrard Inlet Environmental Action Program. Burnaby, B.C. 1998. — 37 p.

11. Мощенко А.В., Белан Т.А. Новые методы оценки экологического состояния природной среды Дальневосточных морей России // Динамика морских экосистем и современные проблемы сохранения биологического потенциала морей России. — Владивосток: Дальнаука, 2007. — С. 276—313.

12. Мощенко А.В., Белан Т.А. Метод оценки антропогенного нарушения сообществ макрозообентоса рыхлых грунтов // Биол. моря. — 2008. — Т. 34, № 4. — С. 279—292.

13. Мощенко А.В. Изменчивость общих характеристик донного населения и их эффективность для мониторинга качества морской среды // Изв. ТИНРО. — 2023. — Т.

151

203, вып. 4. — В печати.

14. Отчет ФГБУ «ДВНИГМИ» «Методы биоиндикации (с использованием структурных характеристик бентосных сообществ) для оценки экологического состояния морской среды: разработка метода оценки экологического состояния донного населения по структуре взаимосвязей животных внутри сообществ макрозообентоса». — 2022. — 132 с. — URL: http://www.ferhri.ru/images/stories/FERHRI/NIR/Otchety/otchet_4.6.2_2022_ moschenko.pdf (дата обращения 27.11.2024).

15. Отчет ФГБУ «ДВНИГМИ» «Проверка возможности применения в практике экологического мониторинга общих характеристики наиболее представительных таксономических групп макрозообентоса». — 2023. — 76 с. — URL: http://www.ferhri.ru/images/stories/FERHRI/NIR/Otchety/otchet_4.6.2_2022_moschenko.pdf (дата обращения 27.11.2024).

16. РД 52.10.556-95. Методические указания. Определение загрязняющих веществ в пробах морских донных отложений и взвеси. — М.: Гидрометеоиздат, 1996. — 49 с.

17. Belan T.A., Moshchenko A.V. Polychaete taxocenes variability associated with sediment pollution loading in the Peter the Great Bay (the East Sea/Japan Sea) // Ocean Science J. - 2005. - Vol. 40, No. 1. - P. 1-10.

18. РИД «Программа для вычисления общего уровня химического загрязнения донных отложений» — Свидетельство о государственной регистрации программы для ЭВМ № 2024661162. — URL: https://fips.ru/EGD/e7d9e247-9044-45fc-a69e-c438800d0886 (дата обращения 27.11.2024).

19. UNEP: Statistical analysis and interpretation of marine community data: Reference methods for Marine Pollution Studies. — Nairobi, 1995. — No. 64. — 75 p.

20. Боровиков В.П., Боровиков И.П. STATISTICA® — Статистический анализ и обработка данных в среде Windows®. — М.: Инф.-издат. дом «Филинъ», 1998. — 608 с.

21. Шитиков В.К., Розенберг Г.С. Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. — Тольятти: Кассандра, 2013. — 314 с.

22. Кабаков Р.И. R в действии. Анализ и визуализация данных в программе R. — М.: ДМК Пресс, 2014. — 588 с.

23. The R Project for Statistical Computing. — URL: https://www.r-project.org (дата обращения 27.11.2024).

24. Hayton J.C., Allen D.G., Scarpello V. Factor Retention Decisions in Exploratory
Factor Analysis: A Tutorial on Parallel Analysis // Organizational Research Methods. — 2004.
— Vol. 7. — P. 191—205.

25. Мощенко А.В., Белан Т.А., Борисов Б.М., Лишавская Т.С., Севастьянов А.В.

Современное загрязнение донных отложений и экологическое состояние макрозообентоса в прибрежной зоне Владивостока (залив Петра Великого Японского моря) // Изв. ТИНРО. — 2019. — Т. 196. — С. 155—181.

26. Мощенко А.В., Белан Т.А., Борисов Б.М., Лишавская Т.С., Севастьянов А.В. Основные тенденции временного хода концентраций приоритетных поллютантов в осадках прибрежных акваторий Владивостока (залив Петра Великого Японского моря) // Изв. ТИНРО. — 2021. — Т. 201, вып. 2. — С. 440—457.

27. Мощенко А.В., Белан Т.А., Лишавская Т.С., Севастьянов А.В., Борисов Б.М. Многолетняя динамика концентраций приоритетных поллютантов и общего уровня химического загрязнения прибрежных акваторий Владивостока (залив Петра Великого Японского моря) // Изв. ТИНРО. — 2020. — Т. 200, вып 2. — С. 377—400.

28. Moshchenko A.V., Belan T.A., Oleynik E.V. Influence of contamination on softbottom communities in Peter the Great Bay, Sea of Japan: choice of variables // Ecological studies and the state of the ecosystem of Amursky Bay and the estuarine zone of the Razdolnaya River (Sea of Japan). — Vladivostok: Dalnauka, 2009. — Vol. 2. — P. 173—204.

29. Мощенко А.В., Белан Т.А., Борисов Б.М. Метод оценки химического загрязнения донных осадков с использованием биоиндикации // Изв. ТИНРО. — 2022а. — Т. 202, вып. 4. — С. 861—879. DOI: 10.26428/1606-9919-2022-202-861-879.

30. Мощенко А.В., Белан Т.А., Борисов Б.М. Распределение и классификация макрозообентоса залива Петра Великого Японского моря по отношению к загрязнению донных отложений // Изв. ТИНРО. — 20226. — Т. 202, вып. 3. — С. 623—639. DOI: 10.26428/1606-9919-2022-202-623-639.

31. Отчет ФГБУ «ДВНИГМИ» «Совершенствование методических основ мониторинга состояния морской среды. Систематизированные данные по факторам среды и общим характеристикам сообществ макрозообентоса». — 2021. — 108 с. — URL: http://ferhri.org/images/stories/FERHRI/NIR/Otchety/otchet_4.6.2_2021_moschenko.pdf (дата обращения 25.09.2023).

32. Oksanen J. Multivariate Analysis of Ecological Communities in R: vegan tutorial. — 2015. — 43 p. — URL: https://ru.scribd.com/document/353618622/R-Vegan-Tutorial-Multivariate-Analysis-of-Ecological-Communities-by-Oksanen (дата обращения 25.09.2023).

 Современное осадкообразование в окраинных морях Востока Азии (статистические модели). — Владивосток: Дальнаука. — 1997. — 302 с.

34. Отчет ФГБУ «ДВНИГМИ» «Совершенствование методических основ мониторинга состояния морской среды. Предложения по установлению граничных критериев для оценки классов состояния морской среды на базе одного или комплекса

153

биологических параметров с учетом передового международного опыта». — 2020. — 167 с.

— URL: http://ferhri.org/images/stories/FERHRI/NIR/Otchety/otchet_462_moschenko.pdf (дата обращения 05.09.2023).

35. Мощенко А.В., Белан Т.А., Ивин В.В. Сообщества макрозообентоса восточной части пролива Босфор Восточный (залив Петра Великого Японского моря) // Изв. ТИНРО. — 2018. — Т. 193. — С. 112—142. DOI: 10.26428/1606-9919-2018-193-112-142.

36. Moshchenko A.V., Belan T.A. Near-bottom environmental conditions and macrobenthos of the inner part of Amursky Bay (Peter the Great Bay, Japan Sea) // Pacific Oceanography. — 2005. — Vol. 3, No. 2. — P. 121—136.

37. Мощенко А.В., Белан Т.А., Борисов Б.М., Лишавская Т.С., Севастьянов А.В. Адаптация метода оценки качества морской среды по данным биологического анализа на основе индексов AMBI и M-AMBI для залива Петра Великого Японского моря // Тр. ДВНИГМИ. — 2021. — Вып. 156. — С. 142—181.

38. Мощенко А.В. О возможности применения в практике экологического мониторинга общих характеристик таксономических групп макрозообентоса // Тр. ДВНИГМИ. — 2024. — Вып. 157. — В печати.

39. Электронный учебник StatSoft. — URL: http://www.statistica.ru (дата обращения 16.11.2023).

40. Non-linear Regression in R for biologist (Part1). — URL: http://rstudio-pubsstatic.s3.amazonaws.com/7812_5327615eb0044cf29420b955ddaa6173.html (дата обращения 27.11.2024).

41. Mann R.E. Global environmental monitoring system (GEMS). — Action Plan for Phase 1. SCOPE, rep. 3. — Toronto: 1973. — 130 p.

42. Израэль Ю.А. Экология и контроль состояния природной среды. — Л.: Гидрометеоиздат, 1979. — 375 с.

43. 2000/60/EC. Water Framework Directive. — 2000. — URL: https://eurlex.europa.eu/legal-content/EN/TXT/?uri=celex:32000L0060 (дата обращения 27.11.2024).

44. 2008/56/EC. Marine Strategy Framework Directive. — 2008. — URL: https://eurlex.europa.eu/legal-content/ EN/TXT/?uri=CELEX%3A32008L0056 (дата обращения 27.11.2024).

45. Van Hoey G., Borja A., Birchenough S., Buhl-Mortensen L., Degraer S., Fleischer D., Kerckhof F., Magni P., Muxika I., Reiss H., Schröder H., Zettler M.L. The use of benthic indicators in Europe: From the Water Framework Directive to the Marine Strategy Framework Directive // Mar. Pollut. Bull. — 2010. — Vol. 60. — P. 2187—2196.

46. Borja A., Franco J., Pérez V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments // Mar. Pollut. Bull.
2000. Vol. 40. P. 1100–1114.

47. Borja Á., Franco J., Muxika I. The biotic indices and the Water Framework Directive: the required consensus in the new benthic monitoring tools // Mar. Pollut. Bull. — 2004. — Vol. 48, No. 3—4. — P. 405—408.

48. Muxika, I., Borja Á., Bald. J. Using historical data, expert judgment and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive // Mar. Pollut. Bull. — 2007. — Vol. 55. — P. 16—29.

49. Мощенко А.В., Белан Т.А., Борисов Б.М., Лишавская Т.С., Севастьянов А.В. К методике выделения сообществ макрозообентоса: простой алгоритм для практики экологического мониторинга // Тр. ДВНИГМИ. — 2021. — Вып. 156. — С. 111–141.

50. Мощенко А.В., Белан Т.А., Борисов Б.М. Сообщества макрозообентоса рыхлых грунтов прибрежных акваторий открытой части залива Петра Великого Японского моря и их экологическое состояние // Изв. ТИНРО. — 2023. — Т. 203, вып. 3. — С. 581–600. DOI: 10.26428/1606-9919-2023-203-581-600. EDN: ZEVAIV.

51. Мощенко А.В. Сообщества макрозообентоса рыхлых грунтов прибрежных акваторий залива Петра Великого близ Владивостока (Японское море) и их экологическое состояние // Изв. ТИНРО. — 2023. — Т. 203, вып. 3. — С. 618–638. DOI: 10.26428/1606-9919-2023-203-618-638. EDN: EJWBOB.

52. Мощенко А.В. О критических уровнях экологического со стояния сообществ макрозообентоса залива Петра Великого Японского моря: натурные исследования // Изв. ТИНРО. — 2024. — Т. 204, вып. 1. — С. 206–222. DOI: 10.26428/1606 9919-2024-204-206-222. EDN: YLGVGF.

53. Мощенко А.В. О критических уровнях экологического состо яния сообществ макрозообентоса залива Петра Великого Японского моря: модельные исследования // Изв. ТИНРО. — 2024. — Т. 204, вып. 2. — С. 383–398. DOI: 10.26428/1606 9919-2024-204-383-398. EDN: HZUVAC.

54. Орлов Д.С., Гришина Л.А. Практикум по химии гумуса. — М.: МГУ, 1981. — 272 с.

55. Лонцих С.В., Петров Л.Л. Стандартные образцы состава природных сред. — Новосибирск: Наука, 1988. — 277 с.

56. Петелин В.П. Гранулометрический анализ морских донных осадков. — М.: Наука, 1967. — 125 с.

57. Боцул А.И. Лазерный измеритель размеров частиц "Analysette 22": достоинства,

недостатки и некоторые особенности использования при анализе донных осадков // Условия образования донных осадков и связанных с ними полезных ископаемых в окраинных морях. — Владивосток: Дальнаука, 2002. — С. 114—118.

58. Dauvin J-C., Bachelet G., Barille' A-L., Blanchet H., Montaudouin, de, X., Lavesque N., Ruellet T.. Benthic indicators and index approaches in the three main estuaries along the French Atlantic coast (Seine, Loire and Gironde) // Mar. Ecol. — 2009. — Vol. 30. — P. 228—240.

59. Borja Á., Mader J., Muxika I. Borja Á., Mader J., Muxika I. Instructions for the use of the AMBI index software (Version 5.0) // Revista de Investigacion Marina. — 2012. — Vol. 19, No. 3. — P. 71—82.

60. Littler M.M., Martz D.R., Littler D.S. Effects of recurrent sand deposition on rocky intertidal organism: importance of substrate heterogeneity in a fluctuating environment // Mar. Ecol. Progr. Ser. — 1983. — V. 11. — P. 129-139.

61. Мощенко А.В. Роль микромасштабной турбулентности в распределении и изменчивости бентосных животных. — Владивосток: Дальнаука, 2006. — 321 с.

62. Тальских В. Н. Использование концепции инвариантных состояний биоценозов в экологическом мониторинге и нормировании загрязнения рек Средней Азии // Экологические модификации и критерии экологического нормирования: Тр. междунар. симп., Нальчик, 1-12 июня 1990 г. — Л.: Гидрометеоиздат, 1991. — С. 163–184.

63. Tishchenko P.P, Tishchenko P.Ya., Lobanov V.B., Sergeev A.F., Semkin P.Yu., Zvalinsky V.I. Summertime in situ monitoring of oxygen depletion in Amursky Bay (Japan/East Sea) // Cont. Shelf Res. — 2016. — Vol. 118. — P. 77—87.

64. Шулькин В.М., Семыкина Г.И. Поступление загрязняющих веществ в залив Петра Великого и оценка их вклада в создание экологических проблем // Современное экологическое состояние залива Петра Великого Японского моря. — Владивосток: Издат. дом ДВФУ, 2012. — С. 252—287.

65. Севастьянов А.В., Лишавская Т.С., Чаткина Т.В. Гипоксия придонных вод прибрежных районов залива Петра Великого // Тр. ДВНИГМИ. — 2012. — Вып. 154. — С. 226–245.

66. Diaz R.J., Rosenberg R. Spreading dead zones and consequences for marine ecosystems // Science. — 2008. — Vol. 321, № 5891. — P. 926–929. DOI: 10.1126/science.1156401.

67. Рыбаков В.Ф. Донные осадки охотоморского шельфа Сахалина // Геологические и географические особенности некоторых регионов Дальнего Востока и зоны перехода к Тихому океану. — Владивосток: Изд-во ДВПИ. — 1989. — С. 123-133.

68. Рыбаков В.Ф. Литодинамика охотоморского шельфа о. Сахалин // Береговая зона дальневосточных морей. — Л.: ГО СССР. . — 1991. — С. 85-97.

69. Sternberg R.W. Predicting initial motion and bed load transport of sediment particles in the shallow marine environment // Shelf Sediment Transport: Process and Pattern. Stroudsburg (Penn.), 1972. — P. 61–82.

70. Качество морских вод по гидрохимическим показателям. Ежегодник 2022 / Под общей редакцией А.Н. Коршенко. — Ижевск: ООО «Принт», 2024. — 232 с.

71. Владимирский Н.П. Стахевич В.С. Руководство по обработке и предсказанию приливов – Л.: Изд. ГУВФМ СССР. 1941. – 347 с.

72. Дуванин А.И. Приливы в море. – Л.: Гидрометеоиздат. 1960. – 390 с.

73. Admiralty Tide Tables. – UK Hydrographic office, volume 6, NP 206. 2024.

74. Руководство по расчету элементов гидрологического режима в прибрежной зоне морей и в устьях рек при инженерных изысканиях. – М.: Гидрометеоиздат. 1973. – 535 с.

75. Huisman J., Olff H., Fresco L.F.M. A Hierarchical Set of Models for Species Response Analysis // J. Veg. Sci. — 1993. — Vol. 4, No. 1. — P. 37—46.

76. Jansen J., Oksanen J. How to model species responses along ecological gradients — Huisman-Olff-Fresco models revisited // J. Veg. Sci. — 2013. — P. 1—10.

77. Jansen J. Hierarchical species response curves in package eHOF — 2017. — Р. 1—8 — URL: https://cran.r-project.org/web/packages/eHOF/vignettes/eHOF.pdf (дата обращения 10.11.2023).

78. Package 'eHOF' — 2020. — P. 1—13. — URL: https://cran.r-project.org/web/ packages/eHOF/eHOF.pdf (дата обращения 25.09.2023).

ПРИЛОЖЕНИЕ А

Алгоритмы факторного анализа концентраций загрязняющих веществ в донных отложениях, еНОF моделирования и нелинейного оценивания

Приложение А1. Алгоритм факторного анализа в среде R.

1) Открываем модуль psych и при помощи интерфейса Rcmdr импортируем данные (Data) из файла Excel:

2) Выполняем факторный анализ:

rotate (вращение) может быть ортогональным или косоугольным, соответственно "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" и "bifactor или "promax", "oblimin", "simplimax", "bentlerQ, "geominQ", "biquartimin" и "cluster".

3) Определяем число факторов (пример представлен на рисунке А.1):

а, б и в, г – съёмки 2016 и 2001 гг., 1 — реальные данные; 2, 3 — результаты симуляции данных и ресэмплинга; горизонтальная штриховая линия — критерий Кайзера-Харриса Рисунок А.1 – Прибрежная акватория Владивостока: пример определения числа извлекаемых факторов и ординация переменных в поле первых двух факторов (соответственно слева и справа)

fa.parallel(Data, fa="both", fm = "ml", n.iter=100, main= "Диаграмма каменистой осыпи с параллельным анализом") (А.3)

Меняем "nfactors" (число факторов) в выражении (А.2) в соответствие с результатами теста и производим новые вычисления (пример результатов этих вычислений приведен в таблице А.1, см. также раздел 1.4).

4) Если необходимо (например, для построения карт распределения факторов), получаем их значения:

Таблица А.1 – Нагрузки факторов, полученных при анализе содержания металлов и органических ЗВ в осадках прибрежной акватории Владивостока (вращение — промакс)

2016 г.			2001 г.			
Соединение, элемент	PoF_1	PoF_2	Соединение, элемент	PoF_1	PoF_2	
Углеводороды	0,97	-0,03	Углеводороды	0,95	-0,10	
Cu	0,97	0,00	Pb	0,95	0,01	
Pb	0,96	0,03	Zn	0,95	0,02	
∑ДДТ	0,95	-0,21	Cu	0,94	0,04	
Zn	0,90	0,18	Hg	0,80	-0,23	
Hg	0,89	-0,02	Cd	0,79	0,08	
Cd	0,77	0,01	∑ДДТ	0,71	0,26	
Фенолы	0,67	0,16	Фенолы	0,70	-0,11	
∑ГХЦГ	0,66	-0,17	Mn	0,21	0,83	
Со	-0,19	0,92	∑ГХЦГ	0,06	0,01	
Ni	0,03	0,91	Fe	0,03	0,91	
Fe	0,08	0,90	Со	-0,03	0,95	
Mn	0,02	0,86	Cr	-0,04	-0,71	
Cr	0,37	0,33	Ni	-0,19	0,97	
Объясняемая дисперсия	7,01	3,48	Объясняемая дисперсия	5,95	4,00	
Доля от общей дисперсии	0,50	0,25	Доля от общей дисперсии	0,43	0,29	

Примечание. Σ ДДТ — сумма ДДТ и его производных; Σ ГХЦГ — сумма α - и γ -изомеров циклогексана; жирным шрифтом выделены нагрузки > 0,7; жирным курсивом — нагрузки, близкие к 0,7

Приложение А2. Алгоритм еНОF моделирования в среде R

Для описания распределения таксономических групп вдоль градиента загрязнения использовали иерархические модели логистической регрессии Хаусмана-Олфа-Фреско (HOF), реализованные в модуле eHOF статистической среды R [75–78]. Считается, что в настоящее время эти модели позволяют наиболее гибко учитывать всю совокупность априорных исходных ограничений и теоретических предположений, традиционно связываемых с характером кривых отклика, и, вероятно, предоставляют наилучший результат с экологической точки зрения [21]. Всего существует семь типов моделей возрастающей сложности (таблица А.2, рисунок А.2).

Таблица А.2 – Формулы моделей Хаусмана-Олфа-Фреско и число коэффициентов

Модель	Формула	Число коэффициентов
Ι	$\frac{M}{1+e^a}$	1
II	$\frac{M}{1+e^{a+b-x}}$	2
III	$\frac{M}{(1+e^{a+b\times x})\times(1+e^c)}$	3
IV	$\frac{M}{(1+e^{a+b-x})\times(1+e^{c-b-x})}$	3
V	$\frac{M}{(1+e^{a+b\times x})\times(1+e^{c-d\times x})}$	4
VI	$\frac{M}{(1+e^{a+b\times x})\times(1+e^{c-b\times x})} + \frac{M}{(1+e^{a+b\times(x-d)})\times(1+e^{c-b\times(x-d)})}$	4
VII	$\frac{M}{(1+e^{a+b\times x})\times(1+e^{c-b\times x})} + \frac{M}{(1+e^{a+b\times(x-d)})\times(1+e^{c-f\times(x-d)})}$	5

Модель первого типа (I) представляет собой «плоский ответ», означающий отсутствие значимого тренда в обилии вида вдоль градиента фактора среды. В принципе, эта модель может служить нулевой гипотезой и гарантировать, что только виды с отчетливым откликом будут описываться одним из остальных типов моделей. Модель второго типа (II) представляет собой монотонный сигмоид с вершиной на одном из концов градиента, кривая отклика третьего типа (III) также является монотонным сигмоидом, но имеет плато ниже максимального верхнего значения обилия. Кривая четвертого типа (IV) – характеризует классическую форму видового отклика – одновершинную симметричную модель, V – унимодальную ассиметричную модель, а модели VI и VII типов имеют по два оптимума, причем у шестой они одинаковы.

получаемые в модуле eHOF (II–VII, модель I типа – прямая горизонтальная линия – не показана)

Выбор модели, описывающей распределение вида вдоль градиента фактора среды в наилучшей степени, производится на основе оценок стандартных отклонений и информационных критериев Акаике и Байеса (АІС и ВІС, по желанию). Кроме самих кривых откликов, получаемые графики содержат и дополнительную информацию о диапазоне встречаемости вида и самой выборке (ширина внешней и внутренней ниш, положение оптимума и субоптимумов, нижние и верхние квартили, 90 % перцентили, а также выбросы). Характеристики встречаемости вида обычно располагаются в верхней части диаграммы, а самой выборки – в нижней (рисунок А.2). К сожалению, у этих моделей есть один существенный недостаток – в выборке у вида должно присутствовать как минимум 10 ненулевых значений. Поэтому, для таксономических групп, найденных на 5–7 станциях (Echiurida и Hydrozoa), в выборку с помощью генератора случайных чисел внутри диапазона встречаемости были добавлены значения 0,1 % (для частоты встречаемости – 1).

1. Открываем модули:

2. Импортируем данные при помощи интерфейса Rcmdr.

3. Затем можно проверить то, что получилось:

4. Прикрепляем наши данные:

5. Просто смотрим на них и выбираем начальную величину параметра М:

f

пример показан на рисунке А.З.

Оси абсцисс и ординат – соответственно общий уровень загрязнения (*TPF*_{chem}, усл. ед.), встречаемость и плотность поселения (экз./м²). Для встречаемости параметр *M* равен единице, для плотности, в данном случае – 2800 Рисунок А.3 – Пример выполнения команды (А.9) для частоты встречаемости и плотности поселения (*a* и б)

6. Выбираем одну или несколько таксономических групп:

sel <- с('название группы') (А.10) sel <- с('название группы 1', ... 'название группы n') (А.11)

7. Выполняем моделирование:

8. Выводим результаты выбора наилучшей модели (по АІС; рисунок А.4):

где M – ваше максимальное значение, family может быть binomial, poisson, gaussian, в зависимости от данных (соответственно дискретные двоичные, целые и непрерывные).

RGui	i (64-bit)					_		×			
Файл Г	Правка	Вид	Разное П	Іакеты Окна	а Справка						
🔍 🥷 R Co	onsole										
Dente							^				
Devia	nces:	ria	Amphipod	a Necidia	Fchinoidea	Castropoda					
т	226	20	372.2	8 137.34	188.13	361.59					
ĪT	224	.79	367.1	4 137.27	146.82	357.26					
III	218	.66	354.9	1 130.42	145.74	355.25					
IV	209	.06	352.2	9 125.04	146.12	353.99					
v	208	.90	351.9	0 124.86		353.60					
VI	209	.06	351.7	5 125.04	146.12	353.99					
VII	207	.68	351.1	4 124.72	146.12	353.51					
Sugar	eteel by		madala (h madal).						
Jatin	sted be	2SC Amm	models (AICC, pic.	K.MOGEL):	Castropoda					
ACUIN	TU	Amp	TV	ASCIDIA	Echinoidea	Gastropoda					
51	1.		1v	1.	11	1.					
							~				
<							>				
<								 >			

Рисунок А.4 – Пример выполнения команды (А.14) для пяти групп макрозообентоса

9. Строим кривые отклика, сначала для наилучшей по AIC модели, затем, если потребуется, все возможные:

где lwd – толщина кривой отклика, yl – диапазон изменения оси ординат (по умолчанию – c(0, 1)). Естественно, здесь можно «настроить» рисунок с большей детализацией (см. [22]). Пример выполнения этих команд для некоторых таксономических групп представлен на рисунке А.5

10. Формируем таблицу с параметрами модели:

```
write.table(df1,"d:/Папка/Файл.txt", sep="\t", col.names=TRUE,
row.names=TRUE, quote=TRUE, na="NA") (A.19)
```


Ось абсцисс – *TPF*_{chem} (усл. ед.), ось ординат – встречаемость, плотность и биомасса (соответственно левый, средний и правый столбец, доли, экз./м² и г/м²) Рисунок А.5 – Распределение групп макрозообентоса вдоль градиента загрязнения

Выводимый файл может быть в формате Excel, но можно его и не создавать, а поместить полученные параметры модели в буфер обмена (подробнее см. [22]). Предварительно, имеется возможность просмотреть и даже отредактировать параметры; последнее в формате R-статистики является весьма трудоемким процессом (рисунок A.6):

🐙 ddd - Редактор R											
<pre>structure(list(structure(list("Actiniaria", 40, c(1, 5), "IV", structure(c(-3.34059882828867, 10.2200890282616, 3.26859744461864), names = c("a", "b", "c")), 1, 0.00102681645848726, 4.99992823086799, 0.259080186647835, 2.29337352240883, 1.01903731450376, c(1.77782399504545, 2,808878269882), 2,29338086044732, structure(c(1.71648149782678)</pre>											
<pre>2.808878269882), 2.29338086044732, structure(c(1.71648149782678, 2.87026554699089), names = c("central.low", "central.high")), structure(c(0.99586309367481, 3.59088395114286), names = c("outer.low", "outer.high")), 2.25875), names = c("species", "abund.sum", "range", "model", "para", "M", "mini", "pess", "top", "opt",</pre>											
<pre>"range", "model", "para", "M", "mini", "pess", "top", "opt", "max.slope", "inflection", "expect", "centralBorder", "outerBorder", "raw.mean"), class = "Para.HOF"), structure(list("Amphipoda", v</pre>											
😨 Редактор данных: df1 — 🗆 🗙											
🗣 Редактор данных: df1					— C	; נ	×				
Редактор данных: df1 Файл Правка Помощь						: נ	×				
 Редактор данных: df1 Файл Правка Помощь Добавить строку Добавить колонк 	У				- C	: נ	×				
 Редактор данных: df1 Файл Правка Помощь Добавить строку Добавить колонк 1 	y2	3	4	5	- C	6	×				
 Редактор данных: df1 Файл Правка Помощь Добавить строку Добавить колонк 1 rowname X1 	y 2 X2	3 X3	4 X4	5 X5	_ C	6 X6	×				
Файл Правка Помощь Добавить строку Добавить колони 1 гоwname X1 1 1 Actiniaria	y 2 X2 40	3 X3 1	4 X4 5	5 X5 IV		6 X6 8867	×				

Рисунок А.6 – Пример выполнения команд (А.20) и (А.21): X1–X7 на нижнем рисунке – названия параметров модели, приведенные на верхнем

Приложение АЗ. Алгоритм нелинейного оценивания (логистические функции) в среде R

1) Создаем сигмоидальную функцию:

2) Вводим область определения сигмоида по оси абсцисс:

где *min* и *max* – минимальное и максимальное значения предиктора.

3) Задаем параметры сигмоида:

$$y \le sigmoid(min:max, m_1, m_2, m_3, m_4) + rnorm(max, m_5, m_6)$$
 (A.24)

где m_1-m_4 – «стартовые» значения для коэффициентов *a*, *b*, *c* и *d* (см. выражение 1.7), m_5 – среднее значение для реальных данных, m_6 – характеристика изменчивости результатов измерений (в нашем случае использована средняя величина модуля остатков); величины m_1-m_6 получаем на предварительном этапе моделирования.

4) Выполняем моделирование и получаем коэффициенты модели:

m.s <- nls(y~a+((b-a)/(1+exp(-c*(x-d)))), start=list(a=min(y), b=max(y), c=1, d=round(median(x))), trace=TRUE), m.s (A.25)

5) Строим график функции:

```
plot(y~x, type="p", pch=22, bg="yellow", xlim=c(min1, max1),
ylim=c(min2, max2), xlab="Название оси абсцисс", ylab="Название
оси ординат") (A.26)
lines(x, fitted(m.s), lty=1, lwd=2, col="red") (A.27)
```

где pch и bg – тип и цвет символа точки на графике, xlim и ylim – желаемые области определения для предиктора и предиката, lty, lvd и col – тип, толщина и цвет модельной кривой (подробнее см. [22]).

6) Выводим, если требуется, полученные данные на дисплей:

list(x), list(y)
$$(A.28)$$

7) Добавляем 95 % доверительные границы:

Пример выполнения команд (А.22)–(А.27) и (А.29)–(А.31) представлен на рисунке А.7, по [40].

Красная линия – модель; штриховая синяя – доверительные границы; области определения *x* и *y* равны соответственно 0–100 и 0–50

Рисунок А.7 – Пример выполнения команд (А.22)–(А.27) и (А.29)–(А.31)

9) Получаем коэффициенты для кривых доверительных границ:

10) Выводим полученные данные в буфер обмена:

Далее используем метод рандомизации, представляющий собой симуляцию множества повторных выборок сигмоидальной функции, как наиболее соответствующей эмпирическим данным, с присущими последним параметрами (область определения, среднее значение, характеристики изменчивости и т.д.).

Процедура рандомизации включает следующие последовательные операции:

1) Симуляцию выборок в 10–100 проворностях;

 Сравнение полученных выборок с реальными данными при помощи тестов Манна-Уитни и Крускала-Уоллиса; 3) Моделирование каждой выборки и получение коэффициентов;

4) Вычисление «средней» модели и доверительных границ путем усреднения коэффициентов и поправкой на объем реальной выборки^{*}.

5) Сравнение моделей, полученных методом рандомизации и при помощи стандартных алгоритмов с использованием теста Вилкоксона.

^{*} Если доверительные границы все еще перекрещиваются, поменяйте местами соответствующие коэффициенты (см. рисунок 5.7).

ПРИЛОЖЕНИЕ Б

Истинные координаты исследованных станций

Станшия	Широта	Лолгота								
Прибрежна	я акватория Вл	аливостока								
A11	43°15.000'	131.54.000'								
A16	43°10.998'	131.52.998'								
A24	43°07.200'	131°51.198'								
U100	43°05.298'	131°59.400'								
U103	43°06.798'	132°01.500'								
Z14	43°04.902'	131°52.182'								
Z19	43°03.398'	131°54.300'								
Z23	43°04.158'	131°51.060'								
Белое море										
Двинский залив										
D0013	38°28.002'	64°09.998'								
D0113	39°30.000'	64°45.000'								
D0115	39°30.000'	64°45.000'								
D0116	39°30.000'	64°45.000'								
D0211	40°00.000'	64°55.000'								
D0215	40°00.000'	64°55.020'								
D0216	40°00.000'	64°55.000'								
D0313	38°00.010'	65°00.010'								
D0316	38°00.010'	65°00.010'								
D0415	39°30.000'	65°10.000'								
D0416	39°30.000'	65°10.000'								
D0516	38°00.000'	65°10.000'								
D0616	39°10.000'	65°20.000'								
D1016	39°38.600'	64°40.100'								
D1116	39°45.400'	64°49.500'								
D1216	39°45.600'	65°02.500'								
D1316	39°30.200'	64°56.500'								
D1416	39°05.100'	64°52.200'								
D1516	39°05.400'	65°04.500'								
D1616	39°07.500'	65°12.700'								
D1716	38°37.400'	65°07.100'								
D1816	38°35.900'	65°15.100'								
D1916	38°08.300'	65°02.100'								
D1y111	39°49.268'	64°38.488'								
D1y13o	39°49.268'	64°38.488'								
D1y13v	39°49.268'	64°38.488'								
D1y141	39°49.268'	64°38.488'								
D1y14o	39°49.268'	64°38.488'								
D1y14v	39°49.268'	64°38.488'								
D1y151	39°49.268'	64°38.488'								
D1y150	39°49.268'	64°38.488'								
D1y15v	39°49.268'	64°38.488'								
D1y16l	39°49.268'	64°38.488'								
D1y160	39°49.268'	64°38.488'								

Таблица Б.1 – Истинные координаты станций отбора проб донных осадков

Станция	Широта	Долгота								
D1y16v	39°49.268'	64°38.488'								
D2y111	39°49.268'	64°38.488'								
Кан	ндалакшский за	ЛИВ								
K2116	32°45.000'	67°00.000'								
K2215	33°30.000'	66°19.200'								
K2216	33°32.412*	66°30.240'								
K2314b	32°24.198'	67°03.102'								
K2315	33°10.300'	66°45.000'								
K2316	33°45.000'	66°30.000'								
K2415r	35°20.000'	66°20.000'								
K2416	34°15.000'	66°34.980'								
K2515	32°45.000'	67°00.000'								
K2516	33°10.300'	66°45.000'								
K2613	33°45.000'	66°30.000'								
K2613g	34°40.000'	66°10.000'								
K2614p	35°20.000'	66°20.000'								
K2615	34°04.000'	66°37.000'								
K2616	32°45.000'	67°00.000'								
(Онежский залив									
O0115s	36°05.502'	65°07.398'								
O0116k	37°00.000'	64°00.000'								
O0116p	37°40.000'	64°10.000'								
O0116s	36°20.000'	65°00.000'								
O0215s	36°05.502'	65°07.398'								
O0216k	36°50.080'	64°11.070'								
O0216p	36°19.998'	65°00.000'								
O0315s	37°25.200'	64°02.502'								
O0316k	36°04.200'	65°06.300'								
O0316p	35°20.000'	64°30.000'								
O0415s	37°40.000'	64°10.000'								
O0416p	35°42.000'	65°01.200'								
O0515s	35°20.000'	64°30.000'								
O1110	36°30.000'	64°35.000'								
O1116	35°15.000'	65°00.000'								
O1210	35°42.600'	65°00.600'								
O1215	35°42.600'	64°59.400'								
O1216	35°43.200'	64°58.800'								
O1313	35°43.200'	64°58.200'								
O1315	40°34.103'	64°31.717'								
O1316	40°33.675'	64°31.9 <mark>36'</mark>								
O1415	38°02.113'	64°04.973'								
O1416	40°31.255'	64°06.281'								
O1515	38°00.438'	64°06.630'								
01516	37°53.542'	63°59.681'								
O1610	37°53.975'	63°59.922'								

Продолжение таблицы Б.1

Продолжение таблицы Б.1

-										
Станция	Широта	Долгота								
O1613	37°53.221'	63°59.759'								
O1616	35°42.000'	65°01.200'								
O1710	35°20.000'	64°30.000'								
O1810	35°15.000'	65°00.000'								
O1713	37°00.000'	64°00.000'								
O1813	37°40.000'	64°10.000'								
O1910	36°30.000'	64°35.000'								
Прибрежье острова Сахалин										
Венинский полигон										
Ven1 52°09.930' 143°15.486'										
Ven2	51°58.756'	143°14.964'								
Ven3	52°'09.543'	143°26.022'								
Ven4	51°59.821'	143°26.072'								
Ven5	51°36.823'	143°25.986'								
Ven6	51°48.489'	143°25.957'								
Ven7	51°42.236'	143°36.710'								
Ven8	51°48.191'	143°36.333'								
v-s19	51°59.485'	143°36.688'								
Ven10	S2°09.526'	143°36.858'								
Ven11	51°59.279'	143°47.679'								
v-sl12	51°52.326'	143°43.988'								
Ven13	51°35.550'	143°41.420'								
Ven14	51°36.301'	143°57.798'								
Ven15	51°47.723'	143°57.949'								
Ven16	51°59.161'	142°58.276'								
Ven17	51°59.015'	144°09.377'								
Ven18	51°47.711'	144°09.197'								
Ven19	51°36.039'	144°09.169'								
Ven20	51°35.863'	144°20.045'								
Ven21	51°47.158'	144°19.719'								
Ven22	51°58.620'	144°19.896'								
Ven23	51°58.433'	144°31.430'								
Ven24	51°41.369'	143°47.734'								
Ven25	51°46.570'	143°46.415'								
Ven26	52°05.394'	143°20.171'								
Ven27	51°55.088'	143°29.722'								
Ven28	51°53.970'	143°20.643'								
Ven29	51°43.669'	143°25.227"								
Ven30	52°06.018'	143°10.986'								
Райо	н платформы Л	ун-А								
E125	51°24.897'	143°39.886'								
N125	51°25.012'	143°39.714'								
S125	51°24.806'	143°39.711'								
SW125	51°24.814'	143°39.603'								

Станция Широта Долгота E250 51°24.903' 143°39.954' N250 51°25.044' 143°39.737' S250 51°24.775' 143°39.707' SW250 51°24.758' 143°39.550' 51°24.912' 143°40.158' E500 51°25.188' N500 143°39.750' S500 51°24.637' 143°39.699' SW500 51°24.645' 143°39.439' E1000 51°24.898' 143°40.587' N1000 51°25.453' 143°39.739' S1000 51°24.381' 143°39.694' SW1000 51°24.430' 143°39.242' REF 1 51°30.385' 143°39.178' REF 2 51°30.387' 143°39.179' REF 3 51°30.321' 143°39.054' NW 143°33.993' 51°33.012' NE 51°33.007' 143°42.007' 51°20.009' SE 143°43.996' SW 51°20.010' 143°35.995' Район платформы ПА-А (Моликпак) E125 52°42.970' 143°34.138' N125 143°33.960' 52°43.074' 52°42.896' S125 143°33.742' W125 52°42.986' 143°33.795' E250 143°34.230' 52°42.964' N250 52°43.152' 143°33.984' S250 52°42.826' 143°33.753' 143°33.709' W250 52°42.981' 52°42.972' E500 143°34.464' N500 52°43.283' 143°33.987' S500 52°42.678' 143°34.166' W500 143°33.480' 52°43.004' E1000 52°42.954' 143°34.904' N1000 52°43.546' 143°34.011' S1000 52°42.405' 143°33.936' W1000 52°42.989' 143°33.035' REF 1 52°37.583' 143°33.962' REF 2 143°33.960' 52°37.050' REF 3 52°36.508' 143°33.979' SW 52°39.012' 143°30.999'

Продолжение таблицы Б.1

Станция	Широта	Долгота
NW	52°46.977'	143°29.111'
NE	52°45.601'	143°44.996'
SE	52°38.991'	143°45.008'
Райс	он платформы Г	ІА-Б
E125	52°55.970'	143°30.032'
N125	52°56.057'	143°30.020'
S125	52°55.913'	143°29.924'
W125	52°55.982'	143°29.903'
E250	52°55.988'	143°29.916'
N250	52°56.106'	143°29.895'
S250	52°55.839'	143°29.904'
W250	52°55.984'	143°29.753'
E500	52°55.972'	143°29.733'
N500	52°56.242'	143°29.908'
S500	52°55.702'	143°29.438'
W500	52°55.992'	143°29.918'
E1000	52°55.958'	143°29.694'
N1000	52°56.520'	143°29.674'
S1000	52°55.437'	143°29.906'
W1000	52°55.994'	143°29.927'
REF3	53°01.310'	143°29.899'
REF2	53°01.311'	143°30.128'
REF1	53°01.240'	143°30.130'
NW	53°00.010'	143°26.007'
NE(3)	53°00.006'	143°42.509'
NE(4)	52°58.606'	143°42.537'
SW	52°49.989'	143°28.301'

Продолжение таблицы Б.1

ПРИЛОЖЕНИЕ В

Систематизированные биологические и геоэкологические данные

Проба	Α	В	R	SR	е	Н	Si	AMBI	M-AMBI	W	TPF_{bio}
A1121_1	2150	107	16	1,95	0,670	2,68	0,261	2,08	0,667	0,123	2,40
A1121_2	1260	70	12	1,54	0,378	1,36	0,637	1,72	0,531	0,058	2,84
A1621_1	3310	47	16	1,85	0,732	2,93	0,167	3,16	0,611	-0,120	2,73
A1621_2	2790	122	22	2,65	0,632	2,82	0,208	2,97	0,648	0,003	2,96
A2421_1	7360	644	8	0,79	0,522	1,57	0,435	3,56	0,393	0,152	2,64
A2421_2	10910	880	11	1,08	0,423	1,46	0,483	3,47	0,428	0,092	3,06
U10021_1	4050	59	11	1,20	0,379	1,31	0,580	2,13	0,490	-0,102	3,23
<i>U10021_2</i>	3770	69	21	2,43	0,528	2,32	0,332	2,11	0,696	-0,099	3,13
U10321_1	1360	95	22	2,91	0,740	3,30	0,178	2,32	0,775	0,200	2,90
<i>U10321_2</i>	1000	532	24	3,33	0,854	3,92	0,089	2,23	0,837	0,441	2,61
Z1421_1	1960	657	13	1,58	0,409	1,51	0,607	1,83	0,569	0,007	3,29
Z1421_2	2740	1098	27	3,28	0,630	3,00	0,197	2,84	0,793	0,164	3,26
Z1921_1	1800	386	15	1,87	0,742	2,90	0,166	2,47	0,663	0,252	2,59
Z1921_2	1470	79	12	1,51	0,724	2,60	0,218	2,75	0,582	0,022	3,31
Z2321_1	620	746	21	3,11	0,822	3,61	0,130	2,01	0,826	0,409	3,03
Z2321_2	2880	354	22	2,64	0,305	1,36	0,685	1,59	0,684	0,000	3,01
A1122	2100	46	14	1,70	0,669	2,55	0,248	2,45	0,594	-0,001	3,03
A1622	1810	58	16	2,00	0,669	2,68	0,248	1,55	0,720	0,110	3,14
A2422	1160	131	9	1,13	0,767	2,43	0,224	3,75	0,463	0,011	3,22
U10022_1	1590	151	19	2,44	0,677	2,88	0,235	2,46	0,680	0,040	2,47
<i>U10022_2</i>	2870	40	23	2,76	0,685	3,10	0,192	2,65	0,747	0,058	2,52
U10322_1	1940	32	16	1,98	0,610	2,44	0,263	2,63	0,703	0,022	3,06
<i>U10322_2</i>	9790	114	20	2,07	0,317	1,37	0,554	3,20	0,703	-0,071	2,74
Z1422	4590	362	17	1,90	0,443	1,81	0,457	0,75	0,717	0,047	3,44
Z1922	2470	294	21	2,56	0,505	2,22	0,395	0,87	0,790	0,117	2,69
Z2322_1	820	1037	16	2,24	0,728	2,91	0,230	1,88	0,716	0,214	3,44
Z2322_2	1410	77	23	3,03	0,681	3,08	0,211	2,48	0,744	0,136	3,14

Таблица В.1 – Систематизированные биологические данные для прибрежной акватории Владивостока

	Глибина	C O		TDE	Псефиты, мм			Пса	аммиты,	MM	Алевриты, мм		Пелиты, мм			
Станция	т лубина, м	С _{орг} , мг/г	$O_2,$	IГГ _{chem} ,	>10	10.5	5.2	2.1	1.0.5	0,5-	0,25-	0,1-	0,05-	0,01-	0,005-	<0.001
	IVI	IVII / I		усл. сд.	>10	10-5	10-3 3-2	2-1	1-0,5	0,25	0,1	0,05	0,01	0,005	0,001	<0,001
A11	7	2,1	4,06	2,6	0,0	0,0	0,0	0,0	0,0	0,2	0,5	34,3	22,6	36,6	5,8	0,1
A16	17	2,5	2,69	2,8	0,0	0,0	0,0	0,0	0,8	7,1	8,3	11,6	39,3	13,0	17,0	2,9
A24	21	2,8	2,42	2,7	0,0	0,0	0,0	0,0	1,6	7,9	2,4	6,1	42,8	16,5	19,7	3,0
U100	18	2,3	4,35	3,5	0,0	0,0	0,0	0,0	2,7	9,0	23,7	18,1	29,3	7,9	8,0	1,3
U103	20	0,7	4,83	2,7	0,0	0,0	0,0	0,0	0,0	3,0	16,9	15,6	36,8	12,1	13,6	2,0
Z14	27	6,9	4,40	3,7	4,8	0,4	2,0	1,1	0,7	1,9	7,6	12,2	42,5	12,9	12,2	1,6
Z19	28	4,1	4,41	3,5	0,0	0,3	0,4	0,4	0,3	1,5	10,8	4,7	46,2	16,9	16,5	2,2
Z23	37	4,6	4,34	3,2	2,0	2,6	4,8	2,3	1,4	9,2	10,5	4,9	33,3	13,9	13,4	1,6

Таблица В.2 – Систематизированные геоэкологические данные для прибрежной акватории Владивостока

Примечание. Указаны минимальные концентрации кислорода в придонном слое воды за 2021–2022 гг., для *TPF*_{chem} – средние за этот период, для остальных параметров – усредненные величины по результатам съемок 2001–2019 гг.

Станция	Α	В	R	SR	Н	е	Si	W
		1	Дв	инский зал	ТИВ	1	1	
D0013	344,3	17,95	6	0,86	1,31	0,505	0,523	-0,197
D0113	313,3	127,55	17	2,78	3,16	0,774	0,849	0,239
D0115	206,7	9,61	7	1,13	1,65	0,588	0,571	0,016
D0116	986,7	396,38	20	2,76	2,87	0,664	0,790	0,169
D0211	525,0	73,80	6	0,80	1,85	0,715	0,657	0,103
D0215	337,7	22,41	9	1,37	1,31	0,412	0,380	0,116
D0216	753,3	48,96	17	2,42	2,64	0,645	0,745	0,097
D0313	426,7	54,93	9	1,32	1,84	0,580	0,619	-0,058
D0316	647,7	27,93	15	2,16	2,16	0,552	0,641	-0,124
D0415	720,0	40,90	10	1,37	2,00	0,603	0,613	-0,075
D0416	1187,7	78,87	21	2,82	2,58	0,587	0,679	0,026
D0516	311,0	7,82	12	1,92	2,55	0,710	0,754	0,014
D0616	263,3	12,61	9	1,44	1,86	0,585	0,569	-0,075
D1016	440,0	21,82	11	1,64	2,00	0,578	0,635	0,005
D1116	884,3	65,29	29	4,13	3,23	0,664	0,820	0,100
D1216	676,7	52,27	17	2,46	3,02	0,738	0,822	0,214
D1316	2143,3	102,57	16	1,96	1,50	0,374	0,447	-0,058
D1416	998,6	24,53	19	2,61	1,49	0,352	0,383	-0,256
D1516	222,0	45,44	16	2,78	3,27	0,818	0,857	0,181
D1616	391,0	48,04	13	2,01	2,83	0,764	0,807	0,218
D1716	517,7	42,46	13	1,92	2,66	0,719	0,796	0,219
D1816	411,0	31,43	11	1,66	2,12	0,614	0,697	0,215
D1916	801,0	95,06	17	2,39	3,31	0,809	0,876	0,223
Dlyll	1852,7	39,18	9	1,06	0,82	0,260	0,231	-0,211
DIy13	7552,0	147,58	6	0,56	0,91	0,353	0,290	-0,066
Dlyl4	83,4	43,35	8	1,58	1,39	0,462	0,416	-0,087
D1y15	2912,4	87,62	12	1,38	1,08	0,302	0,300	-0,029
Dly16	3062,9	79,18	8	0,87	0,86	0,287	0,256	-0,210
			Канда	лакшский	залив			
K2116	160,0	14,91	8	2,00	0,67	1,379	0,648	0,265
K2215	100,0	9,25	8	2,21	0,74	1,520	0,691	0,001
K2216	103,3	13,60	13	2,97	0,80	2,600	0,799	0,322
K2314b	243,3	30,47	12	2,95	0,82	2,002	0,839	0,155
K2315	230,0	14,33	11	2,56	0,74	1,839	0,761	-0,011
K2316	460,0	14,13	19	3,09	0,73	2,936	0,826	0,109
K2415r	476,7	54,41	7	1,76	0,63	0,973	0,600	0,121
K2416	366,6	31,58	15	2,72	0,70	2,374	0,771	0,242
K2515	473,3	44,80	17	3,08	0,75	2,597	0,807	-0,019
K2516	1196,6	51,79	28	2,61	0,54	3,811	0,660	-0,077
K2613	600,0	263,67	13	2,72	0,74	1,876	0,774	0,103
K2613g	1500,0	213,02	13	2,92	0,79	1,641	0,827	0,133
K2614p	483,3	20,09	12	2,03	0,57	1,780	0,623	-0,160
K2615	210,0	69,23	14	3,27	0,86	2,431	0,865	0,218
K2616	313,3	43,63	17	3,24	0,79	2,802	0,858	0,109

Таблица В.3 – Систематизированные биологические данные для исследованных акваторий Белого моря

Станция	Α	В	R	SR	Н	е	Si	W
Онежский залив								
<i>O0115s</i>	8716,7	153,83	7	0,40	0,15	0,551	0,107	-0,355
00116k	1951,7	50,84	9	0,42	0,14	0,924	0,103	-0,335
00116р	230,0	19,30	3	1,33	0,84	0,368	0,567	0,399
00116s	496,0	7,76	4	1,46	0,73	0,483	0,568	0,243
<i>O0215s</i>	5052,7	82,22	7	1,23	0,48	0,586	0,466	-0,056
00216k	96,0	37,85	7	2,37	0,84	1,315	0,780	0,425
00216р	190,0	100,40	5	1,83	0,79	0,762	0,648	0,319
00315s	300,0	24,21	6	1,82	0,70	0,877	0,617	0,049
00316k	374,3	155,97	10	1,72	0,52	1,519	0,547	0,151
00316р	150,0	10,65	5	1,86	0,80	0,798	0,649	0,194
<i>O0415s</i>	123,7	2,56	4	1,13	0,57	0,623	0,445	-0,030
00416р	160,0	1,10	3	0,81	0,81	0,197	0,375	0,136
00515s	190,3	10,87	6	0,55	0,21	0,953	0,144	-0,370
01110	650,0	68,73	17	2,75	0,67	2,470	0,782	0,040
01116	444,3	247,83	16	2,70	0,67	2,460	0,765	0,242
01210	147,7	29,13	12	2,80	0,78	2,202	0,805	0,110
01215	93,3	21,83	8	2,67	0,89	1,543	0,816	0,300
01216	221,0	17,94	21	3,79	0,86	3,705	0,901	0,307
01313	377,0	16,67	13	2,50	0,68	2,023	0,759	-0,042
01315	247,7	11,77	12	2,42	0,68	1,996	0,697	0,121
01316	303,3	21,34	12	3,01	0,84	1,925	0,851	0,252
01415	355,3	121,34	22	3,22	0,72	3,576	0,808	0,177
01416	373,3	74,32	31	3,91	0,79	5,066	0,861	0,197
01515	344,3	312,53	19	3,56	0,85	2,910	0,886	0,415
01516	638,6	250,96	28	3,37	0,70	4,180	0,844	0,199
01610	464,3	280,38	27	4,15	0,87	4,234	0,929	0,352
01613	242,0	1220,50	15	3,52	0,90	2,551	0,898	0,368
01616	1008,6	14,33	26	2,98	0,63	3,615	0,792	-0,048
01710	414,3	124,58	23	3,28	0,73	3,650	0,827	0,215
01713	716,3	136,61	13	2,34	0,63	1,825	0,714	0,372
01810	863,3	637,10	17	2,90	0,71	2,367	0,788	0,013
01813	274,0	19,17	10	2,46	0,74	1,603	0,751	0,006
01910	355,0	362,49	8	1,42	0,47	1,192	0,427	0,167

Продолжение таблицы В.3
Таблица В.4 – Систематизированные геоэкологические данные для исследованных акваторий Белого моря

Станция	Глубина, м	Тип грунта
	Двинский з	залив
D0013	8,0	песок
D0113	11,0	ил
D0115	15,0	илистый песок
D0116	13,5	песок
D0211	10,0	ИЛ
D0215	12,0	песок
D0216	11,0	илистый песок
D0313	50,0	илистый песок
D0316	53,0	глинистый ил
D0415	57,0	ИЛ
D0416	57,0	глина
D0516	87,0	глинистый ил
D0616	68,0	глина
D1016	9,0	песок
D1116	15,0	глина
D1216	27,0	глина
D1316	50,0	глина
D1416	47,0	глина
D1516	57.0	глина
D1616	74.0	глина
D1716	82.0	глинистый ил
D1816	123.0	глинистый ил
D1916	67.0	глинистый ил
D1v11	0.1	песок
D1v13	0.1	песок
D1v14	0.1	песок
$\overline{D1v15}$	0.1	песок
	0.1	песок
	Канлалакшски	ій залив
K2116	225.0	глинистый ил
K2215	91.0	ил
K2216	96.0	глина
K2314b	110.0	песок
K2315	160.0	глинистый ил
K2316	163.0	глина
K2415r	203.0	глинистый ил
K2416	195.0	глина
K2515	35.0	глинистый ил
K2516	47.0	ГЛИНИСТЫЙ ИЛ
K2613	55.0	глинистый ил
K26139	40.0	глинистый ил
K2614n	70.0	песчаный ил
K2615	53.0	ГЛИНИСТЫЙ ИЛ
K2616	39.0	ГЛИНИСТЫЙ ИЛ
112010	Онежский з	
001155	0.1	песок
001100	U.1	

О0116k 0,1 песчаный ил О0116p 0,1 песчаный ил О0215s 0,1 ил О0216k 0,1 песок О0216b 0,1 песок О0216b 0,1 песок О0216b 0,1 песок О0216p 0,1 песок О0315s 0,1 песок О0316b 0,1 песок О0316b 0,1 песок О0415s 0,1 песок О0415s 0,1 песок О1110 11,0 илистый ил О0515s 0,1 песок О1116 8,0 илистый песок О1210 13,0 ил О1215 13,0 ил О1216 13,0 ил О1313 10,0 песчаный ил О1313 10,0 песчаный ил О1315 9,0 глинистый ил О1415 47,0 глинистый ил <	Станция	Глубина, м	Тип грунта
О0116р 0,1 песчаный ил О0215s 0,1 глина О0216k 0,1 песок О0216p 0,1 песок О0216p 0,1 песок О0216p 0,1 песок О0216p 0,1 песок О0315s 0,1 песок О0316p 0,1 песок О0415s 0,1 песок О0416p 0,1 песок О0416p 0,1 песок О1110 11,0 илистый ил О0515s 0,1 песок О1110 11,0 илистый песок О1210 13,0 ил О1215 13,0 ил О1313 10,0 песчаный ил О1315 9,0 глинистый ил О1315 9,0 глинистый ил О1315 9,0 песчаный ил О1416 55,0 песок О1515 30,0 песок <t< td=""><td>00116k</td><td>0,1</td><td>песчаный ил</td></t<>	00116k	0,1	песчаный ил
О0116s 0,1 глина О0215s 0,1 ил О0216k 0,1 песок О0216p 0,1 песок О0216p 0,1 песок О0315s 0,1 песок О0316b 0,1 глина О0316p 0,1 песок О0415s 0,1 песок О0415s 0,1 песок О0415s 0,1 песок О0416p 0,1 песок О0515s 0,1 песок О1110 11,0 илистый песок О1210 13,0 ил О1215 13,0 ил О1216 13,0 глинистый ил О1313 10,0 песчаный ил О1315 9,0 глинистый ил О1316 11,0 глинистый ил О1415 47,0 глинистый ил О1415 30,0 песок О1516 15,0 песок	00116р	0,1	песчаный ил
00215s 0,1 ил 00216k 0,1 песок 00216p 0,1 песок 00315s 0,1 песок 00316k 0,1 глина 00316p 0,1 песок 00316p 0,1 песок 00415s 0,1 песок 00415s 0,1 песок 00416p 0,1 песок 00416p 0,1 песок 0110 11,0 илистый ил 00515s 0,1 песок 01110 11,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глина 01415 47,0 глинистый ил 01515 30,0 песок 01610 38,0 песок	00116s	0,1	глина
00216k 0,1 песок 00216p 0,1 песчаный ил 00315s 0,1 песок 00316k 0,1 глина 00316p 0,1 песок 00415s 0,1 песок 00415s 0,1 песок 00416p 0,1 песок 00416p 0,1 песок 01110 11,0 илистый песок 01110 13,0 ил 01215 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песок 01515 30,0 песок 01610 38,0 песок 01613 25,0 песок 01616 32,0 песок	<i>O0215s</i>	0,1	ИЛ
00216p 0,1 песчаный ил 00315s 0,1 песок 00316k 0,1 глина 00316p 0,1 песок 00415s 0,1 песок 00416p 0,1 песок 00416p 0,1 песчаный ил 00515s 0,1 песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01315 9,0 глинистый ил 01316 11,0 глина 01415 47,0 глинистый ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песок 01613 25,0 песок 01616 32,0 песок	00216k	0,1	песок
00315s 0,1 песок 00316k 0,1 глина 00316p 0,1 песок 00415s 0,1 песок 00415p 0,1 песок 00416p 0,1 песок 00416p 0,1 песок 01110 11,0 илистый песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01315 9,0 глинистый ил 01415 47,0 глинистый ил 01515 30,0 песок 01515 30,0 песок 01610 38,0 песок 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок	<i>O0216p</i>	0,1	песчаный ил
00316k 0,1 глина 00316p 0,1 песок 00415s 0,1 песок 00416p 0,1 песок 00515s 0,1 песок 01110 11,0 илистый песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01315 9,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песок 01515 30,0 песок 01610 38,0 песок 01613 25,0 песок 01710 16,0 песок 01710 16,0 песок 01713 56,0 песок </td <td>00315s</td> <td>0,1</td> <td>песок</td>	00315s	0,1	песок
00316p 0,1 песок 00415s 0,1 песок 00416p 0,1 песчаный ил 00515s 0,1 песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01710 16,0 песок 01710 16,0 песок 01713 56,0 песок 01813 16,0 песок 01910 13,0 пе	00316k	0,1	глина
00415s 0,1 песок 00416p 0,1 песчаный ил 00515s 0,1 песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01710 16,0 песок 01713 56,0 песок 01813 16,0 песок 01813 16,0 песок	<i>O0316p</i>	0,1	песок
00416p 0,1 песчаный ил 00515s 0,1 песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01415 55,0 песок 01515 30,0 песок 01610 38,0 песок 01613 25,0 песок 01616 32,0 песок 01713 56,0 песок 01713 16,0 песок 01813 16,0 песок 01813 16,0 песок	<i>O0415s</i>	0,1	песок
00515s 0,1 песок 01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песок 01613 25,0 песок 01710 16,0 песок 01710 16,0 песок 01713 56,0 песок 01813 16,0 песок 01813 16,0 песок	<i>O0416p</i>	0,1	песчаный ил
01110 11,0 илистый песок 01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01515 30,0 песок 01515 30,0 песок 01610 38,0 песок 01613 25,0 песок 01710 16,0 песок 01710 16,0 песок 01713 56,0 песок 01813 16,0 песок 01813 16,0 песок	00515s	0,1	песок
01116 8,0 илистый песок 01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песок 01613 25,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок	01110	11,0	илистый песок
01210 13,0 ил 01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песок 01613 25,0 песок 01710 16,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01116	8,0	илистый песок
01215 13,0 ил 01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01415 47,0 глинистый ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песок 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01813 16,0 песок 01910 13,0 песок	01210	13,0	ИЛ
01216 13,0 глинистый ил 01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глина 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01710 16,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01215	13,0	ИЛ
01313 10,0 песчаный ил 01315 9,0 глинистый ил 01316 11,0 глинистый ил 01415 47,0 глинистый ил 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01216	13,0	глинистый ил
01315 9,0 глинистый ил 01316 11,0 глина 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01313	10,0	песчаный ил
01316 11,0 глина 01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01315	9,0	глинистый ил
01415 47,0 глинистый ил 01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01316	11,0	глина
01416 55,0 песчаный ил 01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01415	47,0	глинистый ил
01515 30,0 песок 01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01416	55,0	песчаный ил
01516 15,0 песок 01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01515	30,0	песок
01610 38,0 песчаный ил 01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01516	15,0	песок
01613 25,0 песок 01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песчаный ил 01910 13,0 песок	01610	38,0	песчаный ил
01616 32,0 песок 01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песок 01910 13,0 песок	01613	25,0	песок
01710 16,0 песок 01713 56,0 песок 01810 16,0 песок 01813 16,0 песчаный ил 01910 13,0 песок	01616	32,0	песок
01713 56,0 песок 01810 16,0 песок 01813 16,0 песчаный ил 01910 13,0 песок	01710	16,0	песок
01810 16,0 песок 01813 16,0 песчаный ил 01910 13,0 песок	01713	56,0	песок
01813 16,0 песчаный ил 01910 13,0 песок	01810	16,0	песок
01910 13,0 песок	01813	16,0	песчаный ил
	01910	13,0	песок

Продолжение таблицы В.4

Станция	Α	В	R	SR	е	Н	Si	AMBI	M- AMBI	W
Ven1	95	35,9	13	2,64	0,716	2,65	0,281	0,75	0,551	0,191
Ven2	115	113,3	16	3,16	0,815	3,26	0,157	0,51	0,600	0,405
Ven3	47978	890,5	29	2,60	0,264	1,28	0,638	0,09	0,614	-0,047
Ven4	24393	314,6	28	2,67	0,385	1,85	0,393	0,13	0,630	-0,062
Ven5	315	653,1	41	6,95	0,885	4,74	0,054	1,53	0,705	0,441
Ven6	90	374,2	6	1,11	0,641	1,66	0,407	0,08	0,524	0,245
Ven7	5573	687,6	16	1,74	0,088	0,35	0,924	0,01	0,517	-0,130
Ven8	4593	291,7	23	2,61	0,244	1,11	0,620	0,34	0,559	-0,099
Ven9	10855	571,8	26	2,69	0,469	2,21	0,363	0,30	0,623	-0,025
Ven10	23470	662,4	32	3,08	0,342	1,71	0,507	0,10	0,640	-0,013
Ven11	2988	636,6	39	4,75	0,321	1,70	0,608	0,18	0,661	0,022
Ven12	4385	879,3	32	3,70	0,250	1,25	0,669	0,15	0,611	-0,086
Ven13	295	2567,3	18	2,99	0,657	2,74	0,243	0,51	0,574	0,226
Ven14	1245	1015,6	69	9,54	0,850	5,19	0,041	1,42	0,840	0,318
Ven15	1640	860,5	79	10,54	0,821	5,17	0,055	1,30	0,907	0,274
Ven16	31558	880,3	43	4,05	0,027	0,15	0,977	0,02	0,645	-0,051
Ven17	7885	654,0	62	6,80	0,379	2,26	0,414	0,21	0,787	-0,140
Ven18	190	100,4	22	4,00	0,778	3,47	0,174	0,80	0,618	0,180
Ven19	743	110,3	56	8,32	0,884	5,14	0,045	1,21	0,812	0,244
Ven20	150	41,8	23	4,39	0,920	4,16	0,068	1,60	0,587	0,157
Ven21	203	30,3	24	4,33	0,738	3,38	0,164	1,08	0,603	0,042
Ven22	595	467,2	41	6,26	0,685	3,67	0,187	0,73	0,725	0,117
Ven23	773	65,7	59	8,72	0,823	4,84	0,068	1,51	0,782	0,236
Ven24	195	865,4	25	4,55	0,837	3,89	0,103	0,67	0,651	0,371
Ven25	4050	1133,4	43	5,06	0,250	1,35	0,705	0,16	0,658	-0,107
Ven26	12150	223,8	29	2,98	0,059	0,29	0,947	0,03	0,582	-0,048
Ven27	2733	186,1	24	2,91	0,535	2,45	0,280	0,26	0,626	0,054
Ven28	188	20,9	13	2,29	0,775	2,87	0,177	0,81	0,548	0,204
Ven29	60	91,0	14	3,18	0,947	3,61	0,094	1,02	0,566	0,402
Ven30	908	135,1	29	4,11	0,717	3,48	0,146	1,68	0,589	0,199

Таблица В.5 – Систематизированные биологические данные для Венинского полигона

Crowne	Глубина,		Псефи	ты, мм		Пс	аммиты,	MM	АР, мм
Станция	М	<10	10-5	5-2	2-1	1-0,5	0,5-0,25	0,25-0,1	>0,1
Ven1	20	0,0	0,0	0,0	0,0	0,1	4,6	80,2	15,1
Ven2	23	0,0	0,0	0,1	0,1	1,1	6,5	85,2	7,1
Ven3	29	0,0	0,0	0,0	0,1	0,1	0,8	82,4	16,6
Ven4	31	0,0	0,0	0,0	0,0	0,0	0,7	81,8	17,5
Ven5	27	6,5	10,8	28,0	18,3	14,8	11,3	5,3	5,0
Ven6	20	0,4	0,7	2,9	8,4	17,7	25,0	44,8	0,1
Ven7	34	1,0	42	11,5	18,4	33,7	27,7	3,2	0,3
Ven8	39	7,0	18,6	26,0	18,1	19,1	9,5	1,6	0,1
Ven9	48	0,0	0,0	0,1	0,4	0,5	2,4	86,7	9,9
Ven10	43	0,0	0,0	0,0	0,1	0,1	0,4	95,7	3,8
Ven11	60	0,0	0,0	0,9	0,1	0,1	2,6	75,6	20,7
Ven12	60	0,0	0,7	3,1	5,7	16,9	41,2	24,8	7,6
Ven13	57	0,0	0,6	1,0	7,2	24,5	62,9	3,6	0,2
Ven14	94	0,0	0,3	0,5	1,1	3,3	43,0	48,8	3,0
Ven15	83	0,0	0,1	0,7	3,3	13,7	34,8	42,2	5,2
Ven16	70	1,6	1,1	4,4	3,8	15,6	33,4	39,4	0,7
Ven17	90	0,0	0,1	3,5	4,7	13,1	31,6	43,0	4,0
Ven18	113	12,0	1,2	0,9	1,1	2,6	14,4	64,6	3,5
Ven19	138	0,0	0,2	1,4	1,7	3,7	16,2	72,4	4,4
Ven20	204	0,0	1,4	8,3	5,2	6,5	29,1	42,7	6,8
Ven21	170	38,3	3,1	3,4	2,5	4,9	15,6	27,6	4,6
Ven22	127	3,8	0,0	1,9	6,4	16,6	44,9	20,8	5,6
Ven23	340	0,0	0,0	0,0	0,1	0,3	2,0	65,4	32,2
Ven24	69	6,2	0,1	0,7	5,8	20,0	50,0	15,1	2,1
Ven25	64	0,0	0,3	1,3	1,5	2,3	4,3	67,7	22,6
Ven26	27	0,0	0,0	0,0	0,0	0,0	0,3	76,9	22,8
Ven27	37	0,0	0,0	0,0	0,0	0,1	0,5	89,2	10,2
Ven28	28	41,0	3,6	1,5	2,2	4,4	3,9	31,7	11,7
Ven29	25	1,9	1,6	2,1	4,6	16,9	60,7	10,2	2,0
Ven30	17	0,0	0,0	0,0	0,0	0,0	1,4	93,2	5,4

Таблица В.6 – Систематизированные геоэкологические данные для Венинского полигона

Примечание. АР – алевропелиты.

Станция	A	В	R	SR	е	Η	Si	AMBI	M- AMBI	W
E125	12650	677,8	21	2,12	0,026	0,12	0,980	0,01	0,557	-0,126
N125	4615	137,7	38	4,39	0,359	1,88	0,438	0,40	0,702	-0,066
S125	3917	273,3	61	7,25	0,365	2,16	0,516	0,27	0,876	-0,001
SW125	4177	374,7	52	6,12	0,283	1,61	0,578	0,15	0,790	-0,041
E250	12130	500,5	48	5,00	0,132	0,74	0,828	0,11	0,755	-0,102
N250	8782	265,8	58	6,28	0,253	1,48	0,584	0,28	0,826	-0,074
S250	5468	236,1	41	4,65	0,224	1,20	0,729	0,13	0,714	-0,107
SW250	4138	514,1	43	5,04	0,301	1,63	0,521	0,15	0,729	-0,005
E500	2633	542,1	48	5,97	0,396	2,21	0,360	1,02	0,740	0,006
N500	2588	122,5	58	7,25	0,468	2,74	0,260	1,01	0,822	0,002
<i>S500</i>	4050	385,8	47	5,54	0,302	1,68	0,566	1,35	0,666	-0,011
SW500	3992	507,9	44	5,19	0,411	2,24	0,316	1,01	0,700	-0,053
E1000	4737	925,8	43	4,96	0,296	1,61	0,452	0,61	0,727	0,020
N1000	4880	445,4	48	5,53	0,389	2,17	0,378	1,10	0,729	-0,012
<i>S1000</i>	4063	370,9	33	3,85	0,364	1,84	0,465	1,35	0,597	-0,111
SW1000	3300	261,9	47	5,68	0,471	2,62	0,256	1,14	0,721	-0,052
REF 1	1122	470,5	44	6,12	0,679	3,71	0,127	0,81	0,798	0,176
REF 2	1063	864,1	46	6,46	0,705	3,89	0,100	0,88	0,825	0,216
REF 3	805	781,8	49	7,17	0,772	4,33	0,075	0,79	0,851	0,270
NE	438	276,4	41	6,58	0,786	4,21	0,083	0,99	0,794	0,291
NW	515	42,4	39	6,09	0,753	3,98	0,122	0,67	0,795	0,145
SE	5425	427,1	59	6,75	0,327	1,92	0,494	0,40	0,872	-0,037
SW	2492	39,7	46	5,75	0,471	2,60	0,282	0,90	0,781	-0,069

Таблица В.7 – Систематизированные биологические данные для района платформы Лун-А

G	Глубина,	ΟУ,		Псефи	гы, мм		Пс	аммиты,	ММ	Алеври	ты, мм	П	елиты, м	Μ
Станция	M	МКГ/Г	>10	10-5	5-2	2-1	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05- 0,01	0,01- 0,005	0,005- 0,001	<0,001
E125	50,0	1,1	0,0	0,0	0,0	0,1	0,1	1,2	96,1	2,1	0,4	0,0	0,0	0,0
N125	49,3	2,7	0,0	0,0	0,1	0,4	0,5	6,0	91,3	1,5	0,3	0,0	0,0	0,0
S125	50,0	3,0	0,0	6,9	9,8	9,4	6,7	20,7	45,4	1,0	0,2	0,0	0,0	0,0
SW125	49,0	4,0	0,0	0,0	0,1	0,4	0,7	7,6	90,0	1,1	0,1	0,0	0,0	0,0
E250	50,8	2,7	0,0	0,0	0,1	0,2	0,4	2,9	95,1	1,2	0,2	0,0	0,0	0,0
N250	49,5	1,3	0,0	0,0	0,1	0,3	0,6	5,1	91,5	2,1	0,4	0,0	0,0	0,0
S250	49,6	3,7	0,0	0,0	2,8	6,0	5,0	26,9	58,8	0,4	0,1	0,0	0,0	0,0
SW250	35,8	1,0	0,0	0,0	0,1	0,3	0,6	6,3	90,5	1,9	0,4	0,0	0,0	0,0
E500	51,1	2,5	0,0	0,0	0,0	0,1	0,2	2,9	94,0	2,5	0,3	0,0	0,0	0,0
N500	49,7	3,1	0,0	0,0	0,0	0,1	0,2	2,4	95,8	1,3	0,2	0,0	0,0	0,0
<i>S500</i>	49,1	2,6	0,0	0,0	0,6	0,8	1,2	9,6	85,2	2,3	0,4	0,0	0,0	0,0
SW500	48,2	1,8	0,0	0,0	0,0	0,3	0,6	7,6	89,8	1,6	0,2	0,0	0,0	0,0
E1000	52,9	0,9	0,0	0,0	0,0	0,2	0,9	9,2	88,0	1,4	0,2	0,0	0,0	0,0
N1000	50,1	1,0	0,0	0,0	0,0	0,2	0,8	7,4	90,0	1,4	0,2	0,0	0,0	0,0
<i>S1000</i>	48,9	1,4	0,0	0,0	0,0	0,2	0,9	8,3	89,0	1,6	0,1	0,0	0,0	0,0
SW1000	47,3	1,0	0,0	0,0	0,4	1,8	1,9	13,0	80,8	2,0	0,2	0,0	0,0	0,0
REF 1	50,2	1,2	5,2	0,4	1,4	0,6	0,3	1,8	87,7	2,5	0,2	0,0	0,0	5,2
REF 2	50,5	2,2	0,0	0,0	0,0	0,5	0,4	2,0	94,6	2,3	0,2	0,0	0,0	0,0
REF 3	50,0	14,6	0,0	0,0	0,0	0,5	0,4	2,2	94,4	2,3	0,2	0,0	0,0	0,0
NE	57,8	1,5	0,0	2,5	0,4	0,3	0,9	40,6	52,0	2,8	0,6	0,0	0,0	0,0
NW	37,7	2,0	0,0	0,0	0,0	0,0	0,1	1,1	93,2	5,1	0,6	0,0	0,0	0,0
SE	60,8	2,2	0,0	0,0	0,1	0,4	0,7	4,8	91,7	2,0	0,5	0,0	0,0	0,0
SW	32,7	0,8	0,0	0,8	17,1	25,7	12,3	23,9	18,5	1,4	0,3	0,0	0,0	0,0

Таблица В.8 – Систематизированные геоэкологические данные для района платформы Лун-А

Примечание. ОУ – общие углеводороды.

Станция	A	В	R	SR	е	Н	Si	AMBI	M-	W
E105		1 6 5 5	•		0.044	1.00	0.070	1.7.1	AMBI	0.0.00
E125	258	165,7	29	5,04	0,864	4,20	0,072	1,54	0,752	0,363
N125	2992	1295,3	43	5,25	0,525	2,85	0,268	1,48	0,723	0,103
S125	15520	628,6	50	5,08	0,364	2,06	0,348	1,46	0,710	-0,013
W125	7858	2789,3	41	4,46	0,404	2,16	0,418	1,39	0,684	0,060
E250	167	37,6	17	3,13	0,816	3,34	0,134	0,28	0,751	0,307
N250	4635	2984,2	55	6,40	0,596	3,45	0,179	1,57	0,824	0,127
S250	16815	1073,5	48	4,83	0,136	0,76	0,836	1,52	0,621	-0,066
W250	27043	427,0	52	5,00	0,188	1,07	0,736	1,44	0,667	-0,038
E500	547	142,7	22	3,33	0,823	3,67	0,104	1,06	0,725	0,356
N500	18550	2783,1	54	5,39	0,200	1,15	0,746	1,48	0,686	0,025
S500	410	1466,4	27	4,32	0,701	3,33	0,166	0,60	0,766	0,258
W500	453	265,1	48	7,68	0,702	3,92	0,149	1,24	0,836	0,254
E1000	343	927,9	21	3,43	0,682	2,99	0,224	0,37	0,740	0,241
N1000	2088	410,9	47	6,02	0,608	3,38	0,197	1,08	0,823	0,075
S1000	362	189,1	29	4,75	0,821	3,99	0,088	0,70	0,809	0,299
W1000	858	629,2	33	4,74	0,472	2,38	0,437	0,28	0,761	0,132
REF 1	540	2810,8	25	3,81	0,678	3,15	0,195	0,26	0,788	0,261
REF 2	235	114,9	19	3,30	0,828	3,52	0,120	0,32	0,761	0,335
REF 3	773	4913,1	30	4,36	0,527	2,59	0,340	0,21	0,770	0,166
NE	505	3462,1	30	4,66	0,614	3,01	0,288	0,38	0,776	0,245
NW	29322	1090,8	54	5,15	0,287	1,65	0,508	1,34	0,713	0,004
SE	708	1533,2	39	5,79	0,765	4,04	0,098	0,57	0,866	0,291
SW	9532	2665,5	43	4,58	0,146	0,79	0,826	0,08	0,722	0,023

Таблица В.9 – Систематизированные биологические данные для района платформы ПА-А

G	Глубина,	ΟУ,		Псефи	ты, мм		Пс	аммиты,	MM	Алеври	ты, мм	П	[елиты, м	Μ
Станция	М	мкг/г	>10	10-5	5-2	2-1	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05- 0,01	0,01- 0,005	0,005- 0,001	<0,001
E125	30,0	1,5	0,0	4,5	22,9	23,9	12,3	17,1	18,0	1,0	0,3	0,0	0,0	0,0
N125	29,9	0,6	0,0	4,1	6,3	13,7	18,2	46,7	10,9	0,1	0,0	0,0	0,0	0,0
S125	32,0	3,4	0,0	4,4	21,3	28,6	17,7	11,6	14,7	1,4	0,3	0,0	0,0	0,0
W125	31,7	0,7	1,6	3,8	20,1	17,4	11,8	14,6	29,1	1,3	0,3	0,0	0,0	0,0
E250	29,3	0,8	0,0	4,4	35,8	29,7	14,6	11,2	4,3	0,2	0,0	0,0	0,0	0,0
N250	31,1	0,6	0,0	0,0	0,4	3,0	13,6	60,5	22,6	0,1	0,0	0,0	0,0	0,0
S250	32,0	1,4	0,0	1,9	12,0	18,1	19,9	15,4	31,2	1,2	0,2	0,0	0,0	0,0
W250	32,5	0,8	3,7	6,3	51,4	26,3	4,9	1,2	5,0	1,1	0,2	0,0	0,0	0,0
E500	28,3	1,8	4,0	11,8	30,2	19,1	6,5	3,1	20,9	3,8	0,7	0,0	0,0	0,0
N500	31,8	1,9	0,0	0,7	8,6	16,9	21,3	36,2	16,3	0,2	0,0	0,0	0,0	0,0
<i>S500</i>	29,1	0,5	0,0	0,4	1,2	4,8	15,7	64,7	13,3	0,0	0,0	0,0	0,0	0,0
W500	34,6	2,5	0,0	0,0	1,5	4,4	1,0	2,3	88,6	1,8	0,4	0,0	0,0	0,0
E1000	30,2	0,5	0,0	0,5	35,3	21,2	5,6	2,2	33,1	1,8	0,2	0,0	0,0	0,0
N1000	32,7	4,2	0,0	0,0	2,4	10,4	10,9	57,4	18,6	0,2	0,1	0,0	0,0	0,0
<i>S1000</i>	29,1	1,7	0,0	0,0	0,1	2,4	17,1	63,4	16,9	0,1	0,0	0,0	0,0	0,0
W1000	32,4	0,6	0,0	0,0	0,0	0,2	1,0	28,1	70,2	0,3	0,1	0,0	0,0	0,0
REF1	24,7	0,5	0,0	0,0	0,6	0,5	0,7	14,6	83,3	0,4	0,0	0,0	0,0	0,0
REF2	23,7	0,9	0,0	0,0	0,4	3,8	33,5	50,6	11,7	0,0	0,0	0,0	0,0	0,0
REF3	26,6	0,6	0,0	0,0	0,4	0,3	0,6	2,9	94,8	0,9	0,1	0,0	0,0	0,0
SW1	29,4	1,4	5,8	11,1	20,3	16,0	8,1	5,4	32,8	0,5	0,1	0,0	0,0	0,0
NW2	27,6	1,0	0,0	0,0	0,0	0,1	1,2	27,0	71,5	0,2	0,0	0,0	0,0	0,0
NE3	53,5	3,0	0,0	0,2	0,1	0,0	0,4	22,9	76,3	0,1	0,0	0,0	0,0	0,0
SE4	51,9	2,1	0,0	0,9	8,0	22,6	23,0	36,7	7,8	0,8	0,2	0,0	0,0	0,0

Таблица В.10 – Систематизированные геоэкологические данные для района платформы ПА-А

Примечание. ОУ – общие углеводороды.

Станция	A	В	R	SR	е	Н	Si	AMBI	M- AMBI	W
E125	352	1220	24	3,92	0,699	3,21	0,170	0,25	0,663	0,255
N125	485	532	29	4,53	0,722	3,51	0,156	0,33	0,700	0,233
S125	4897	92	39	4,47	0,226	1,20	0,714	1,37	0,518	-0,121
W125	335	159	28	4,64	0,784	3,77	0,117	0,62	0,699	0,335
E250	380	400	29	4,71	0,734	3,57	0,137	0,46	0,702	0,258
N250	485	307	28	4,37	0,651	3,13	0,201	0,27	0,683	0,151
S250	7277	121	52	5,74	0,174	0,99	0,782	1,44	0,573	-0,115
W250	382	307	28	4,54	0,656	3,16	0,247	0,42	0,679	0,231
E500	550	656	30	4,60	0,647	3,18	0,195	0,34	0,688	0,196
N500	775	37	40	5,86	0,637	3,39	0,215	1,11	0,695	0,079
<i>S500</i>	138	27	21	4,06	0,764	3,36	0,163	1,64	0,583	0,120
W500	383	181	30	4,87	0,663	3,25	0,220	0,47	0,695	0,205
E1000	637	43	40	6,04	0,737	3,92	0,115	0,99	0,740	0,193
N1000	1415	550	71	9,65	0,818	5,03	0,053	1,35	0,921	0,270
<i>S1000</i>	2452	162	51	6,41	0,436	2,47	0,379	1,19	0,680	0,044
W1000	530	369	47	7,33	0,807	4,48	0,073	1,04	0,815	0,318
REF 1	250	1784	19	3,26	0,436	1,85	0,528	0,10	0,566	0,165
REF 2	332	2477	22	3,62	0,583	2,60	0,322	0,20	0,628	0,202
REF 3	422	1330	27	4,30	0,770	3,66	0,122	0,58	0,693	0,323
NWI	223	49	23	4,07	0,861	3,90	0,084	1,73	0,622	0,351
NE3	218	517	26	4,64	0,800	3,76	0,108	0,67	0,688	0,361
NE4	220	949	24	4,26	0,788	3,61	0,126	0,75	0,662	0,362
SW5	9672	453	37	3,92	0,363	1,89	0,383	1,47	0,550	-0,044

Таблица В.11 – Систематизированные биологические данные для района платформы ПА-Б

G	Глубина,	ΟУ,		Псефи	ты, мм		Пс	аммиты,	ММ	Алеври	ты, мм	П	[елиты, м	Μ
Станция	М	мкг/г	>10	10-5	5-2	2-1	1-0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05- 0,01	0,01- 0,005	0,005- 0,001	<0,001
E125	31,8	1,2	0,0	0,0	0,1	0,1	0,2	17,0	81,9	0,7	0,1	0,0	0,0	0,0
N125	32,5	0,5	0,0	0,0	0,0	0,1	0,2	13,0	86,0	0,6	0,0	0,0	0,0	0,0
S125	31,4	0,5	0,0	4,8	8,0	16,6	8,9	44,6	16,7	0,2	0,1	0,0	0,0	0,0
W125	31,6	0,8	35,0	14,4	10,3	4,5	1,8	5,3	27,9	0,7	0,1	0,0	0,0	0,0
E250	31,0	0,5	0,0	0,0	0,2	0,6	1,4	38,2	59,3	0,3	0,0	0,0	0,0	0,0
N250	31,8	0,5	0,0	0,0	0,7	4,9	7,2	55,7	31,4	0,1	0,0	0,0	0,0	0,0
S250	32,4	2,4	24,2	13,5	11,8	13,5	7,9	20,4	6,9	1,4	0,3	0,0	0,0	0,0
W250	31,2	1,6	0,0	0,0	0,0	0,1	0,4	22,2	76,8	0,5	0,0	0,0	0,0	0,0
E500	31,4	1,5	0,0	0,0	0,1	0,3	0,9	32,0	66,5	0,3	0,0	0,0	0,0	0,0
N500	31,7	8,3	0,0	0,0	0,2	0,5	1,8	35,6	61,6	0,2	0,0	0,0	0,0	0,0
<i>S500</i>	31,1	0,6	0,0	2,0	5,5	16,5	12,1	42,0	21,8	0,1	0,0	0,0	0,0	0,0
W500	31,1	1,2	0,0	0,0	0,4	1,0	1,6	14,5	82,1	0,5	0,0	0,0	0,0	0,0
E1000	32,6	1,7	19,3	16,1	25,4	7,0	4,2	6,3	19,3	2,2	0,3	0,0	0,0	0,0
N1000	29,5	2,8	10,3	9,8	10,1	4,3	1,5	4,6	57,3	1,9	0,2	0,0	0,0	0,0
<i>S1000</i>	30,4	4,5	0,0	0,0	0,4	1,1	1,4	12,9	56,9	0,4	8,5	4,1	11,3	3,0
W1000	29,1	2,0	0,0	0,0	7,4	36,1	19,7	17,9	17,6	1,1	0,2	0,0	0,0	0,0
REF1	28,2	2,8	0,0	0,0	0,0	0,4	2,5	82,8	14,2	0,2	0,0	0,0	0,0	0,0
REF2	28,9	1,9	0,0	0,0	6,1	7,8	12,4	64,8	8,8	0,2	0,0	0,0	0,0	0,0
REF3	29,4	15,2	0,0	0,0	2,3	5,1	11,1	70,8	10,5	0,2	0,0	0,0	0,0	0,0
NW	29,3	1,9	0,0	0,0	0,0	0,1	0,6	81,0	17,8	0,5	0,1	0,0	0,0	0,0
NE	56,2	3,7	12,8	15,4	17,9	15,6	9,9	8,9	18,2	1,1	0,2	0,0	0,0	0,0
SE4	45,3	1,4	0,0	0,0	0,3	0,2	0,2	1,2	97,4	0,7	0,0	0,0	0,0	0,0
SE5	27,2	2,0	0,0	0,0	0,0	0,1	0,3	4,6	94,5	0,5	0,1	0,0	0,0	0,0

Таблица В.12 – Систематизированные геоэкологические данные для района платформы ПА-Б

Примечание. ОУ – общие углеводороды.

Столица	Р	езультати	ы классиф	икации, %	6	NIA 0/	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
Станция	Ι	II	III	IV	V	INA, %	ед.	ний местообитания	усл. ед.	статус
A1121_1	1,9	66,5	24,2	6,5	0,9	0,0	2,07	Слегка нарушенное	0,673	Хороший
A1121_2	3,2	86,5	4,8	5,6	0,0	0,0	1,69	Слегка нарушенное	0,541	Хороший
A1621_1	1,8	25,7	36,6	33,8	2,1	0,0	3,13	Слегка нарушенное	0,623	Хороший
A1621_2	1,4	35,8	28,3	31,5	2,9	0,0	2,98	Слегка нарушенное	0,698	Хороший
A2421_1	0,0	1,6	59,5	34,6	4,2	0,0	3,62	Умеренно нарушенное	0,382	Обедненный
A2421_2	0,0	1,2	66,4	30,9	1,6	0,0	3,49	Умеренно нарушенное	0,419	Умеренный
<i>U10021_1</i>	1,2	76,5	3,0	18,3	1,0	0,0	2,12	Слегка нарушенное	0,497	Умеренный
<i>U10021_2</i>	2,1	58,9	36,9	0,8	1,3	0,0	2,11	Слегка нарушенное	0,702	Хороший
<i>U10321_1</i>	20,6	18,4	49,3	11,8	0,0	0,0	2,28	Слегка нарушенное	0,783	Высокий
<i>U10321_2</i>	23,2	27,3	33,3	16,2	0,0	0,0	2,14	Слегка нарушенное	0,851	Высокий
Z1421_1	0,0	85,7	6,6	4,1	3,6	0,0	1,88	Слегка нарушенное	0,553	Хороший
Z1421_2	0,7	33,5	41,2	7,7	16,9	0,7	3,10	Слегка нарушенное	0,765	Хороший
Z1921_1	0,6	55,6	22,8	1,7	19,4	0,0	2,76	Слегка нарушенное	0,633	Хороший
Z1921_2	2,7	48,3	12,2	2,0	34,7	0,0	3,27	Слегка нарушенное	0,538	Хороший
Z2321_1	6,5	61,3	24,2	8,1	0,0	0,0	2,01	Слегка нарушенное	0,814	Высокий
Z2321_2	1,0	91,3	7,3	0,3	0,0	0,0	1,60	Слегка нарушенное	0,669	Хороший
A1122	0,0	61,0	13,3	24,3	1,4	0,0	2,49	Слегка нарушенное	0,610	Хороший
A1622	29,3	45,9	13,8	9,4	1,7	0,0	1,62	Слегка нарушенное	0,702	Хороший
A2422	0,0	10,3	29,3	29,3	31,0	0,0	4,22	Умеренно нарушенное	0,426	Умеренный
<i>U10022_1</i>	10,8	24,2	52,2	12,7	0,0	0,0	2,50	Слегка нарушенное	0,666	Хороший
<i>U10022_2</i>	15,9	14,8	42,8	26,5	0,0	0,0	2,70	Слегка нарушенное	0,733	Хороший
<i>U10322_1</i>	19,6	11,9	42,8	25,8	0,0	0,0	2,62	Слегка нарушенное	0,705	Хороший
<i>U10322_2</i>	2,1	3,4	73,8	20,7	0,0	0,0	3,20	Слегка нарушенное	0,705	Хороший
Z1422	65,5	23,4	6,6	0,9	3,7	0,0	0,81	Ненарушенное	0,683	Хороший
Z1922	62,3	21,5	11,7	0,8	3,6	0,0	0,93	Ненарушенное	0,771	Высокий
Z2322_1	12,3	59,3	11,1	16,0	1,2	0,0	2,02	Слегка нарушенное	0,678	Хороший
Z2322_2	7,2	46,0	18,7	26,6	1,4	0,7	2,54	Слегка нарушенное	0,745	Хороший

Таблица В.13 – Прибрежье Владивостока: фрагмент протокола применения программы для определения индексов AMBI и M-AMBI

Примечание. I–V – экологические группы, NA – нерасклассифицированные таксоны.

Cmoving	Р	езультать	ы классиф	икации, 9	6	NIA 0/	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
Станция	Ι	II	III	IV	V	INA, %	ед.	ний местообитания	усл. ед.	статус
						Двинский	залив			
D0013	100,0	0,0	0,0	0,0	0,0	0,0	0,00	Ненарушенное	0,485	Умеренный
D0113	87,5	10,4	2,1	0,0	0,0	0,0	0,22	Ненарушенное	0,677	Хороший
D0115	5,3	29,8	0,0	64,9	0,0	0,0	3,37	Умеренно нарушенное	0,310	Обедненный
D0116	19,3	72,7	1,1	7,0	0,0	0,0	1,44	Слегка нарушенное	0,698	Хороший
D0211	0,0	30,2	3,8	66,0	0,0	0,0	3,54	Умеренно нарушенное	0,295	Обедненный
D0215	5,7	2,3	2,3	89,8	0,0	0,0	4,14	Умеренно нарушенное	0,231	Обедненный
D0216	12,3	51,6	17,2	18,9	0,0	0,0	2,14	Слегка нарушенное	0,617	Хороший
D0313	96,2	0,0	3,8	0,0	0,0	0,0	0,12	Ненарушенное	0,498	Умеренный
D0316	21,7	70,7	5,7	1,9	0,0	0,0	1,32	Слегка нарушенное	0,555	Хороший
D0415	9,4	77,8	0,0	12,8	0,0	0,0	1,74	Слегка нарушенное	0,475	Умеренный
D0416	14,1	77,6	0,3	8,0	0,0	0,0	1,53	Слегка нарушенное	0,651	Хороший
D0516	25,0	71,4	1,8	1,8	0,0	0,0	1,21	Слегка нарушенное	0,612	Хороший
D0616	23,6	69,4	2,8	4,2	0,0	0,0	1,31	Слегка нарушенное	0,487	Умеренный
D1016	8,6	8,6	81,7	1,1	0,0	0,0	2,63	Слегка нарушенное	0,433	Умеренный
D1116	19,1	57,2	2,0	21,7	0,0	0,0	1,90	Слегка нарушенное	0,725	Хороший
D1216	20,8	12,5	31,0	35,7	0,0	0,0	2,72	Слегка нарушенное	0,571	Хороший
D1316	5,5	80,7	0,3	13,6	0,0	0,0	1,83	Слегка нарушенное	0,486	Умеренный
D1416	5,7	88,2	2,5	3,6	0,0	0,0	1,56	Слегка нарушенное	0,523	Умеренный
D1516	38,1	35,7	16,7	9,5	0,0	0,0	1,46	Слегка нарушенное	0,638	Хороший
D1616	36,8	62,1	1,1	0,0	0,0	0,0	0,96	Ненарушенное	0,595	Хороший
D1716	53,8	45,5	0,0	0,8	0,0	0,0	0,72	Ненарушенное	0,602	Хороший
D1816	44,6	55,4	0,0	0,0	0,0	0,0	0,83	Ненарушенное	0,503	Умеренный
D1916	50,5	34,9	8,5	6,1	0,0	0,0	1,05	Ненарушенное	0,682	Хороший
D1y11l	0,2	4,0	95,8	0,0	0,0	2,8	2,93	Слегка нарушенное	0,343	Обедненный
D1y13o	0,0	8,2	91,8	0,0	0,0	0,0	2,88	Слегка нарушенное	0,321	Обедненный
D1y13v	0,0	15,8	84,2	0,0	0,0	0,0	2,76	Слегка нарушенное	0,314	Обедненный
D1y14l	0,0	7,4	92,6	0,0	0,0	3,6	2,89	Слегка нарушенное	0,327	Обедненный

Таблица В.14 – Белое море: фрагмент протокола применения программы для определения индексов AMBI и M-AMBI

	Станшия Н	езультать	ы классиф	икации, 9	⁄0		AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
Станция	Ι	II	III	IV	V	NA, %	ед.	ний местообитания	усл. ед.	статус
D1y14o	0,0	3,7	96,3	0,0	0,0	18,2	2,94	Слегка нарушенное	0,378	Обедненный
Dlyl4v	0,0	14,6	85,4	0,0	0,0	0,0	2,78	Слегка нарушенное	0,356	Обедненный
D1y15l	0,0	4,9	95,0	0,0	0,0	0,0	2,93	Слегка нарушенное	0,326	Обедненный
D1y15o	0,0	19,4	80,6	0,0	0,0	51,1	2,71	Слегка нарушенное	0,408	Умеренный
D1y15v	0,0	17,2	82,8	0,0	0,0	0,0	2,74	Слегка нарушенное	0,392	Умеренный
D1y16l	0,0	5,9	94,1	0,0	0,0	1,8	2,91	Слегка нарушенное	0,345	Обедненный
D1y16o	0,0	8,0	92,0	0,0	0,0	1,2	2,88	Слегка нарушенное	0,332	Обедненный
D1y16v	0,0	2,5	97,5	0,0	0,0	0,3	2,96	Слегка нарушенное	0,286	Обедненный
D2y111	0,2	6,7	93,2	0,0	0,0	0,0	2,90	Слегка нарушенное	0,305	Обедненный
	-				I	Кандалакшс	кий залив			
K2116	77,5	20,0	2,5	0,0	0,0	0,0	0,38	Ненарушенное	0,537	Хороший
K2215	26,7	46,7	26,7	0,0	0,0	0,0	1,50	Слегка нарушенное	0,529	Умеренный
K2216	13,3	66,7	13,3	6,7	0,0	0,0	1,70	Слегка нарушенное	0,610	Хороший
K2314b	69,2	24,6	6,2	0,0	0,0	0,0	0,55	Ненарушенное	0,620	Хороший
K2315	11,5	75,4	11,5	1,6	0,0	0,0	1,55	Слегка нарушенное	0,531	Хороший
K2316	24,8	72,7	1,7	0,9	0,0	0,0	1,18	Ненарушенное	0,662	Хороший
K2415r	71,7	25,2	0,0	3,1	0,0	0,0	0,52	Ненарушенное	0,485	Умеренный
K2416	45,2	43,3	5,8	5,8	0,0	0,0	1,08	Ненарушенное	0,645	Хороший
K2515	33,9	56,2	9,8	0,0	0,0	0,0	1,14	Ненарушенное	0,630	Хороший
K2516	24,6	68,3	7,1	0,0	0,0	0,0	1,24	Слегка нарушенное	0,728	Хороший
K2613	66,2	27,7	6,1	0,0	0,0	0,0	0,60	Ненарушенное	0,608	Хороший
K2613g	41,3	58,7	0,0	0,0	0,0	0,0	0,88	Ненарушенное	0,591	Хороший
K2614p	6,3	89,5	4,2	0,0	0,0	0,0	1,47	Слегка нарушенное	0,427	Умеренный
K2615	43,8	37,5	6,2	12,5	0,0	0,0	1,31	Слегка нарушенное	0,622	Хороший
K2616	31,8	53,0	15,2	0,0	0,0	0,0	1,25	Слегка нарушенное	0,700	Хороший
						Онежский	і́ залив			
<i>O0115s</i>	0,0	2,3	97,7	0,0	0,0	0,0	2,97	Слегка нарушенное	0,279	Обедненный
00116k	0,2	2,0	97,8	0,0	0,0	0,0	2,96	Слегка нарушенное	0,304	Обедненный
00116р	0,0	18,2	81,8	0,0	0,0	0,0	2,73	Слегка нарушенное	0,270	Обедненный

Столица	F	Результаты классификации, %		⁄0	NIA 0/	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический	
Станция	Ι	II	III	IV	V	$\mathbf{INA}, 70$	ед.	ний местообитания	усл. ед.	статус
00116s	3,6	32,1	64,3	0,0	0,0	0,0	2,41	Слегка нарушенное	0,332	Обедненный
00215s	1,3	17,6	81,1	0,0	0,0	0,0	2,70	Слегка нарушенное	0,335	Обедненный
00216k	0,0	20,0	80,0	0,0	0,0	0,0	2,70	Слегка нарушенное	0,433	Умеренный
00216р	0,0	61,1	38,9	0,0	0,0	0,0	2,08	Слегка нарушенное	0,401	Умеренный
00315s	0,0	15,4	84,6	0,0	0,0	0,0	2,77	Слегка нарушенное	0,393	Умеренный
00316k	4,1	7,5	88,4	0,0	0,0	0,0	2,77	Слегка нарушенное	0,422	Умеренный
00316р	0,0	30,8	69,2	0,0	0,0	0,0	2,54	Слегка нарушенное	0,364	Обедненный
00415s	9,1	9,1	81,8	0,0	0,0	0,0	2,59	Слегка нарушенное	0,303	Обедненный
00416р	0,0	25,0	75,0	0,0	0,0	0,0	2,63	Слегка нарушенное	0,286	Обедненный
00515s	33,3	0,0	66,7	0,0	0,0	0,0	2,00	Слегка нарушенное	0,392	Умеренный
01110	50,9	2,9	45,0	1,2	0,0	0,0	1,45	Слегка нарушенное	0,626	Хороший
01116	59,0	19,0	17,0	5,0	0,0	0,0	1,02	Ненарушенное	0,609	Хороший
01210	40,0	42,9	11,4	5,7	0,0	0,0	1,24	Слегка нарушенное	0,620	Хороший
01215	62,5	37,5	0,0	0,0	0,0	0,0	0,56	Ненарушенное	0,562	Хороший
01216	35,6	54,2	1,7	8,5	0,0	0,0	1,25	Слегка нарушенное	0,788	Высокий
01313	95,1	4,9	0,0	0,0	0,0	0,0	0,07	Ненарушенное	0,596	Хороший
01315	81,7	10,0	8,3	0,0	0,0	0,0	0,40	Ненарушенное	0,582	Хороший
01316	64,2	28,4	7,4	0,0	0,0	0,0	0,65	Ненарушенное	0,655	Хороший
01415	78,6	8,9	12,5	0,0	0,0	0,0	0,51	Ненарушенное	0,814	Высокий
01416	59,4	31,9	8,7	0,0	0,0	0,0	0,74	Ненарушенное	0,956	Высокий
01515	27,5	67,0	5,5	0,0	0,0	0,0	1,17	Ненарушенное	0,715	Хороший
01516	15,8	79,4	4,9	0,0	0,0	0,0	1,34	Слегка нарушенное	0,814	Высокий
01610	59,5	29,7	10,7	0,0	0,0	0,0	0,77	Ненарушенное	0,888	Высокий
01613	52,0	44,0	4,0	0,0	0,0	3,8	0,78	Ненарушенное	0,736	Хороший
01616	77,2	22,5	0,4	0,0	0,0	0,0	0,35	Ненарушенное	0,784	Высокий
01710	80,4	16,1	3,6	0,0	0,0	0,0	0,35	Ненарушенное	0,803	Высокий
01713	33,1	66,9	0,0	0,0	0,0	0,0	1,00	Ненарушенное	0,563	Хороший
01810	57,8	42,2	0,0	0,0	0,0	0,0	0,63	Ненарушенное	0,682	Хороший
01813	46,2	50,7	3,1	0,0	0,0	0,0	0,85	Ненарушенное	0,510	Умеренный

Станция	Результаты классификации, %					NA 04	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
	Ι	II	III	IV	V	NA, %	ед.	ний местообитания	усл. ед.	статус
01910	84,1	14,5	1,4	0,0	0,0	0,0	0,26	Ненарушенное	0,518	Умеренный

Примечание. I–V – экологические группы, NA – нерасклассифицированные таксоны.

Таблица В.15 – Прибрежье острова Сахалин: фрагмент протокола применения программы для определения индексов AMBI и M-AMBI

Crownia	P	езультати	ы классиф	икации, 9	%	NA %	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
Станция	Ι	II	III	IV	V	INA, %	ед.	ний местообитания	усл. ед.	статус
						Венинский	полигон			
Ven1	65,8	21,1	10,5	2,6	0,0	0,0	0,75	Ненарушенное	0,551	Хороший
Ven10	93,4	6,5	0,1	0,0	0,0	0,0	0,10	Ненарушенное	0,640	Хороший
Ven11	90,4	7,6	1,8	0,3	0,0	0,0	0,18	Ненарушенное	0,661	Хороший
Ven12	91,1	8,4	0,3	0,0	0,2	0,1	0,15	Ненарушенное	0,611	Хороший
Ven13	67,3	31,8	0,9	0,0	0,0	0,0	0,51	Ненарушенное	0,574	Хороший
Ven14	26,0	55,8	15,8	2,4	0,0	1,1	1,42	Слегка нарушенное	0,840	Высокий
Ven15	29,9	55,8	12,5	1,8	0,0	0,5	1,30	Слегка нарушенное	0,907	Высокий
Ven16	99,1	0,7	0,2	0,0	0,0	0,0	0,02	Ненарушенное	0,645	Хороший
Ven17	87,4	11,4	1,2	0,0	0,0	0,0	0,21	Ненарушенное	0,787	Высокий
Ven18	56,0	36,0	6,7	1,3	0,0	0,0	0,80	Ненарушенное	0,618	Хороший
Ven19	41,5	39,7	15,3	3,5	0,0	0,3	1,21	Слегка нарушенное	0,812	Высокий
Ven2	70,5	25,0	4,5	0,0	0,0	2,2	0,51	Ненарушенное	0,600	Хороший
Ven20	19,0	60,3	15,5	5,2	0,0	0,0	1,60	Слегка нарушенное	0,587	Хороший
Ven21	32,1	65,4	1,3	1,3	0,0	1,3	1,08	Ненарушенное	0,603	Хороший
Ven22	61,9	28,8	8,1	1,3	0,0	0,4	0,73	Ненарушенное	0,725	Хороший
Ven23	30,4	46,5	15,1	8,0	0,0	0,7	1,51	Слегка нарушенное	0,782	Высокий
Ven24	62,2	31,1	6,8	0,0	0,0	0,0	0,67	Ненарушенное	0,651	Хороший
Ven25	90,1	9,1	0,8	0,1	0,0	0,0	0,16	Ненарушенное	0,658	Хороший
Ven26	98,4	1,6	0,0	0,0	0,0	0,0	0,03	Ненарушенное	0,582	Хороший
Ven27	83,5	16,2	0,3	0,1	0,0	0,3	0,26	Ненарушенное	0,626	Хороший
Ven28	48,1	50,0	1,9	0,0	0,0	0,0	0,81	Ненарушенное	0,548	Хороший

	P	Результаты классификации, %	0		AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический		
Станция	Ι	II	III	IV	V	NA, %	ед.	ний местообитания	усл. ед.	статус
Ven29	31,8	68,2	0,0	0,0	0,0	0,0	1,02	Ненарушенное	0,566	Хороший
Ven3	94,4	5,6	0,1	0,0	0,0	0,0	0,09	Ненарушенное	0,614	Хороший
Ven30	24,0	41,9	32,1	2,0	0,0	0,0	1,68	Слегка нарушенное	0,589	Хороший
Ven4	91,5	8,5	0,0	0,0	0,0	0,0	0,13	Ненарушенное	0,630	Хороший
Ven5	28,3	58,3	5,0	0,0	8,3	0,0	1,53	Слегка нарушенное	0,705	Хороший
Ven6	94,4	5,6	0,0	0,0	0,0	0,0	0,08	Ненарушенное	0,524	Умеренный
Ven7	99,2	0,8	0,0	0,0	0,0	0,0	0,01	Ненарушенное	0,517	Умеренный
Ven8	77,6	22,2	0,1	0,1	0,0	0,0	0,34	Ненарушенное	0,559	Хороший
Ven9	80,5	19,2	0,2	0,0	0,0	0,0	0,30	Ненарушенное	0,623	Хороший
					Pa	йон платфој	омы Лун-А			
E1000	60,0	39,8	0,1	0,1	0,0	0,0	0,60	Ненарушенное	0,723	Хороший
E125	99,6	0,4	0,0	0,0	0,0	0,0	0,01	Ненарушенное	0,566	Хороший
E250	92,8	7,0	0,1	0,1	0,0	0,0	0,11	Ненарушенное	0,758	Хороший
E500	33,2	66,4	0,2	0,3	0,0	0,1	1,01	Ненарушенное	0,743	Хороший
N1000	27,3	72,4	0,2	0,0	0,0	0,0	1,10	Ненарушенное	0,732	Хороший
N125	73,8	26,1	0,1	0,0	0,0	0,0	0,39	Ненарушенное	0,707	Хороший
N250	81,7	18,3	0,1	0,0	0,0	0,0	0,28	Ненарушенное	0,821	Высокий
N500	33,5	66,1	0,4	0,0	0,0	0,1	1,00	Ненарушенное	0,825	Высокий
NE_2	43,8	52,6	2,4	1,2	0,0	1,2	0,91	Ненарушенное	0,794	Высокий
NW_1	59,2	38,8	1,7	0,3	0,0	0,0	0,65	Ненарушенное	0,793	Высокий
REF_1	51,2	47,3	1,0	0,5	0,0	0,5	0,76	Ненарушенное	0,808	Высокий
REF_2	46,7	52,6	0,4	0,4	0,0	0,2	0,82	Ненарушенное	0,834	Высокий
REF_3	50,6	48,5	0,7	0,2	0,0	0,2	0,76	Ненарушенное	0,857	Высокий
<i>S1000</i>	10,7	88,9	0,4	0,0	0,0	0,2	1,35	Слегка нарушенное	0,605	Хороший
<i>S125</i>	82,0	17,9	0,1	0,0	0,0	0,0	0,27	Ненарушенное	0,876	Высокий
S250	91,2	8,7	0,0	0,0	0,0	0,0	0,13	Ненарушенное	0,719	Хороший
\$500	10,8	89,1	0,0	0,0	0,0	0,1	1,34	Слегка нарушенное	0,681	Хороший
SE_3	73,1	26,7	0,2	0,0	0,0	0,1	0,41	Ненарушенное	0,872	Высокий
SW_4	40,8	58,8	0,5	0,0	0,0	0,0	0,90	Ненарушенное	0,766	Хороший

Продолжение	Гаолицы		тклосонф		/_		AMPL NOT	V record warmer Hoppowy	MAMDI	Эконориноокий
Станция	T	т	ы классиф тт	икации, /	V V	NA, %	Амы, усл.	Классификация поврежде-	M-AMDI,	Экологический
GIULOOO	1	11 72.2		10	V	0.0	ед.	нии местоооитания	усл. ед.	craryc
SW1000	25,9	73,3	0,6	0,2	0,0	0,3	1,13	Ненарушенное	0,734	Хорошии
SW125	90,3	9,4	0,3	0,0	0,0	0,0	0,15	Ненарушенное	0,793	Высокий
SW250	90,6	9,1	0,2	0,1	0,0	0,1	0,15	Ненарушенное	0,734	Хороший
SW500	33,3	66,5	0,1	0,1	0,0	0,0	1,01	Ненарушенное	0,704	Хороший
					Район п.	латформы П	А-А (Молик	так)		
E1000	80,4	14,3	5,3	0,0	0,0	0,0	0,37	Ненарушенное	0,740	Хороший
E125	13,3	71,9	14,1	0,8	0,0	3,0	1,54	Слегка нарушенное	0,752	Хороший
E250	81,1	18,9	0,0	0,0	0,0	0,0	0,28	Ненарушенное	0,751	Хороший
E500	29,1	70,9	0,0	0,0	0,0	1,3	1,06	Ненарушенное	0,725	Хороший
N1000	43,8	42,9	11,1	2,2	0,0	1,0	1,08	Ненарушенное	0,823	Высокий
N125	7,0	87,6	5,3	0,0	0,0	0,9	1,48	Слегка нарушенное	0,723	Хороший
N250	13,7	68,1	17,9	0,4	0,0	1,7	1,57	Слегка нарушенное	0,824	Высокий
N500	3,9	94,3	1,3	0,5	0,0	0,6	1,48	Слегка нарушенное	0,686	Хороший
NE3	75,9	23,0	0,7	0,4	0,0	2,5	0,38	Ненарушенное	0,776	Высокий
NW2	12,0	87,0	0,8	0,2	0,0	0,3	1,34	Слегка нарушенное	0,713	Хороший
REF1	85,1	13,3	0,9	0,6	0,0	0,0	0,26	Ненарушенное	0,788	Высокий
REF2	78,4	21,6	0,0	0,0	0,0	0,0	0,32	Ненарушенное	0,761	Хороший
REF3	87,3	11,9	0,7	0,2	0,0	0,0	0,21	Ненарушенное	0,770	Высокий
S1000	58,5	36,2	5,3	0,0	0,0	1,6	0,70	Ненарушенное	0,809	Высокий
<i>S125</i>	3,9	94,6	1,4	0,0	0,0	0,0	1,46	Слегка нарушенное	0,710	Хороший
S250	1,3	96,1	2,5	0,0	0,0	0,2	1,52	Слегка нарушенное	0,621	Хороший
S500	62,4	35,4	2,2	0,0	0,0	0,4	0,60	Ненарушенное	0,766	Хороший
SE4	63,2	35,8	1,0	0,0	0,0	0,0	0,57	Ненарушенное	0,866	Высокий
SW1	94,8	5,2	0,0	0,0	0,0	0,0	0,08	Ненарушенное	0,722	Хороший
W1000	86,5	9,2	3,0	1,2	0,0	0,0	0,28	Ненарушенное	0,761	Хороший
W125	13,1	81,4	5,5	0,0	0,0	0,3	1,39	Слегка нарушенное	0,684	Хороший
W250	7,0	91,0	0,9	1,1	0,0	0,1	1,44	Слегка нарушенное	0,667	Хороший
W500	27,4	64,3	7,5	0,0	0,8	0,0	1,24	Слегка нарушенное	0,836	Высокий

Crowna	P	езультать	ы классиф	икации, 9	⁄0	NIA 0/	AMBI, усл.	Классификация поврежде-	M-AMBI,	Экологический
Станция	Ι	II	III	IV	V	INA, %	ед.	ний местообитания	усл. ед.	статус
					Pa	айон платфо	рмы ПА-Б	•		
E1000	38,4	58,4	2,1	1,1	0,0	0,0	0,99	Ненарушенное	0,740	Хороший
E125	84,1	14,9	1,0	0,0	0,0	0,0	0,25	Ненарушенное	0,663	Хороший
E250	71,3	26,9	1,8	0,0	0,0	0,0	0,46	Ненарушенное	0,702	Хороший
E500	81,7	15,5	1,2	1,6	0,0	0,0	0,34	Ненарушенное	0,688	Хороший
N1000	30,1	55,8	8,0	6,0	0,0	0,0	1,35	Слегка нарушенное	0,921	Высокий
N125	81,0	16,0	3,0	0,0	0,0	0,4	0,33	Ненарушенное	0,700	Хороший
N250	84,7	12,8	2,6	0,0	0,0	0,4	0,27	Ненарушенное	0,683	Хороший
N500	30,4	67,0	0,7	2,0	0,0	0,0	1,11	Ненарушенное	0,695	Хороший
NE3	58,1	39,5	1,6	0,8	0,0	0,0	0,67	Ненарушенное	0,688	Хороший
NE4	60,9	32,0	3,1	3,9	0,0	0,0	0,75	Ненарушенное	0,662	Хороший
NWI	24,6	53,3	4,1	18,0	0,0	7,6	1,73	Слегка нарушенное	0,622	Хороший
REF1	93,9	5,4	0,7	0,0	0,0	0,7	0,10	Ненарушенное	0,566	Хороший
REF2	86,7	13,3	0,0	0,0	0,0	0,0	0,20	Ненарушенное	0,628	Хороший
REF3	66,1	30,2	3,2	0,0	0,4	0,4	0,58	Ненарушенное	0,693	Хороший
<i>S1000</i>	23,3	75,0	0,7	0,8	0,1	0,1	1,19	Ненарушенное	0,680	Хороший
<i>S125</i>	8,7	91,1	0,1	0,1	0,0	0,0	1,37	Слегка нарушенное	0,518	Умеренный
S250	4,4	95,2	0,3	0,1	0,0	0,1	1,44	Слегка нарушенное	0,573	Хороший
<i>S500</i>	13,5	71,6	6,8	8,1	0,0	9,8	1,64	Слегка нарушенное	0,583	Хороший
SW5	3,3	95,2	1,6	0,0	0,0	0,1	1,47	Слегка нарушенное	0,550	Хороший
W1000	51,8	34,7	5,8	7,7	0,0	1,6	1,04	Ненарушенное	0,815	Высокий
W125	65,3	30,1	2,6	2,1	0,0	0,0	0,62	Ненарушенное	0,699	Хороший
W250	76,4	19,6	3,6	0,4	0,0	0,0	0,42	Ненарушенное	0,679	Хороший
W500	76,3	18,0	3,5	2,2	0,0	0,4	0,47	Ненарушенное	0,695	Хороший

Продолжение таблицы В.15

Примечание. I–V – экологические группы, NA – нерасклассифицированные таксоны.

ПРИЛОЖЕНИЕ Г

Результаты статистических процедур

Станция или		Кластер	
проба	Ι	II	III
	Прибрежье В	Зладивостока	
A1121_1	0,913	0,084	0,003
A1121_2	0,926	0,066	0,007
A1122	0,916	0,053	0,030
A1621_1	0,998	0,002	0,000
A1621_2	0,985	0,014	0,001
A2421_1	0,995	0,004	0,000
A2421_2	0,992	0,007	0,001
A2422	0,981	0,017	0,003
A1622	0,787	0,206	0,006
Z1421_1	0,013	0,984	0,003
Z1421_2	0,023	0,974	0,003
Z1422	0,059	0,921	0,020
Z1921_1	0,011	0,988	0,001
Z1921_2	0,009	0,987	0,004
Z1922	0,033	0,953	0,015
Z2321 1	0,037	0,960	0,003
Z2321 2	0,040	0,954	0,006
Z2322 1	0,041	0,945	0,014
Z2322 2	0,073	0,918	0,009
U10021 2	0.061	0.921	0,017
U10021 1	0.280	0.624	0,095
U10022 1	0,001	0,002	0,997
U10022_2	0,001	0,002	0,997
U10322_2	0,002	0,002	0,996
U10321_1	0,011	0,047	0,942
U10321_2	0,007	0,023	0,971
U10322_1	0,001	0,003	0,996
	Венински	й полигон	,
Ven2	0,923	0,026	0,050
Ven1	0,921	0,033	0,046
Ven13	0,815	0,058	0,127
Ven29	0,809	0,049	0,142
Ven6	0,803	0,063	0,134
Ven7	0,801	0,147	0,052
Ven24	0,723	0,028	0,250
Ven28	0,721	0.143	0,136
Ven30	0,635	0.183	0,182
Ven21	0,546	0,075	0,379
Ven5	0,492	0,107	0,402
Ven18	0,482	0,044	0.474
Ven4	0,003	0,994	0,003
Ven10	0,002	0,992	0,006
Ven3	0,011	0,978	0,011
Ven9	0,021	0,936	0,044
Ven27	0,043	0,893	0,064

Таблица Г.1. Результаты нечеткой классификации сообществ макрозообентоса – степень принадлежности станций к выделенным кластерам (экспоненциальный вес – 1,2)

Станция или		Кластер	
проба	Ι	II	III
Ven26	0,122	0,806	0,072
Ven8	0,347	0,538	0,114
Ven15	0,027	0,012	0,960
Ven14	0,074	0,034	0,892
Ven25	0,062	0,048	0,890
Ven22	0,150	0,039	0,811
Ven19	0,084	0,107	0,809
Ven23	0,122	0,081	0,797
Ven11	0,093	0,110	0,797
Ven17	0,058	0,159	0,783
Ven12	0,081	0,165	0,753
Ven20	0,271	0,064	0,665
Ven16	0,297	0,136	0,567
	Район платф	ормы Лун-А	
S1000	0,967	0,018	0,015
SW500	0,954	0,034	0,012
E500	0,936	0,047	0,017
N1000	0,907	0,075	0,017
SE_3	0,858	0,106	0,036
S500	0,851	0,103	0,045
N500	0,832	0,129	0,039
E1000	0,828	0,139	0,032
SW1000	0,803	0,134	0,063
N125	0,676	0,281	0,043
E125	0,629	0,249	0,122
S250	0,023	0,964	0,013
S125	0,026	0,958	0,017
SW125	0,033	0,944	0,023
N250	0,082	0,905	0,013
E250	0,089	0,894	0,017
SW250	0,092	0,841	0,067
SW_4	0,180	0,656	0,164
REF_1	0,014	0,012	0,974
REF_2	0,014	0,018	0,968
NE_2	0,021	0,030	0,949
NW_1	0,020	0,035	0,945
REF_3	0,058	0,035	0,908
F	Район платфор	омы Моликпа	к
E500	0,991	0,003	0,006
S1000	0,987	0,001	0,012
REF2	0,981	0,001	0,019
S500	0,979	0,005	0,016
E1000	0,967	0,004	0,029
E250	0,928	0,002	0,070
E125	0,781	0,150	0,068
N500	0,000	1,000	0,000
W125	0,000	0,999	0,000

Продолжение таблицы Г.1

Станция или		Кластер	
проба	Ι	II	III
S125	0.000	0.999	0.001
N250	0,001	0,998	0,001
S250	0,001	0,998	0,001
NW2	0,001	0,998	0,001
W250	0,001	0,997	0,002
N1000	0,006	0,988	0,006
N125	0,010	0,979	0,011
REF1	0,006	0,000	0,994
REF3	0,009	0,001	0,990
SE4	0,012	0,005	0,983
NE3	0,014	0,004	0,983
SW1	0,041	0,019	0,940
W1000	0,064	0,003	0,934
W500	0,232	0,265	0,503
	Район платф	оормы ПА-Б	
S250	0,994	0,002	0,004
S125	0,991	0,003	0,006
S1000	0,969	0,013	0,018
N500	0,957	0,019	0,024
E1000	0,956	0,019	0,025
N1000	0,947	0,018	0,035
SW5	0,911	0,013	0,076
E500	0,001	0,993	0,006
N250	0,001	0,993	0,006
W250	0,001	0,992	0,008
E125	0,002	0,990	0,008
W500	0,001	0,987	0,012
E250	0,002	0,987	0,012
N125	0,007	0,973	0,020
W1000	0,054	0,861	0,085
W125	0,070	0,720	0,211
NE3	0,008	0,028	0,964
REF1	0,010	0,049	0,941
NE4	0,008	0,054	0,938
REF2	0,039	0,037	0,924
REF3	0,073	0,040	0,887
S500	0,149	0,068	0,782
NW1	0,124	0,202	0,674

Продолжение таблицы Г.1

Примечание. Жирным шрифтом выделены значения, указывающие на принадлежность к соответствующему кластеру, жирным курсивом отмечены величины, показывающие заметную (>0,1) близость к дополнительному кластеру.

Таксон	А или В	$\overline{\mathcal{S}_i}$	$\delta_i/SD(\delta_i)$	<i>CN</i> , %	<i>CCN</i> , %
Прибреж	ная акватор	оия Владив	остока		-1
Группа І. Плотност	ь поселения	и. Среднее	сходство 34,76	5%	
Scoletoma longifolia	696,67	4,39	1,03	12,63	12,63
Sigambra bassi	194,44	3,90	1,03	11,22	23,85
Maldane sarsi	322,22	3,75	0,96	10,79	34,64
Nemertea fam. gen. sp.	35,56	3,49	1,71	10,05	44,69
Schistomeringos japonica	82,22	3,36	1,11	9,67	54,35
Группа I. Био	масса. Сред	цнее сходст	гво 31,91 %		
Maldane sarsi	14,11	4,16	0,92	13,02	13,02
Nemertea fam. gen. sp.	1,94	4,04	1,60	12,65	25,67
Scoletoma longifolia	7,13	3,34	1,02	10,48	36,15
Sigambra bassi	1,60	3,06	1,02	9,59	45,74
Schistomeringos japonica	0,52	2,36	1,11	7,41	53,15
Группа II. Плотност	ъ поселения	я. Среднее	сходство 23,44	4 %	
Ophiura sarsii vadicola	270,00	2,27	0,61	9,70	9,70
Glycinde armigera	63,33	1,91	0,80	8,15	17,84
Schistomeringos japonica	62,50	1,80	0,64	7,69	25,54
Scoletoma sp.	97,50	1,72	0,67	7,35	32,89
Aphaelochaeta pacifica	49,17	1,33	0,53	5,68	38,57
Группа II. Бис	масса. Сре,	днее сходс	тво 19,36 %		
Ophiura sarsii vadicola	20,39	2,48	0,63	12,78	12,78
Scoletoma sp.	0,98	1,22	0,65	6,32	19,11
Amphiodia fissa	4,86	1,19	0,41	6,14	25,25
Nemertea fam. gen. sp.	4,05	1,14	0,51	5,90	31,15
Glycinde armigera	0,35	1,13	0,79	5,83	36,98
Группа III. Плотност	гь поселени	я. Среднее	сходство 34,1	9 %	
Ophiura sarsii vadicola	650,00	5,76	1,31	16,85	16,85
Scoletoma longifolia	135,00	4,27	1,25	12,50	29,35
Ennucula tenuis	90,00	3,85	1,25	11,25	40,60
Scoloplos armiger	106,67	3,69	1,23	10,79	51,39
Schistomeringos japonica	225,00	3,00	0,73	8,79	60,18
	Белое м	лоре			
Группа I. Плотност	ь поселения	н. Среднее	сходство 20,49	9%	
Lagis koreni	64,21	3,95	0,74	19,26	19,26
Yoldia hyperborea	12,06	3,05	0,83	14,88	34,14
Gammaridea gen. spp.	4,57	2,42	0,70	11,82	45,96
Owenia fusiformis	149,29	2,36	0,48	11,53	57,49
Nuculana pernula	7,14	1,34	0,49	6,54	64,03
Группа І. Био	масса. Сред	цнее сходст	гво 21,74 %		1
Yoldia hyperborea	5,44	5,19	0,98	23,86	23,86
Lagis koreni	8,06	5,04	0,79	23,17	47,02
Nuculana pernula	1,39	1,85	0,58	8,51	55,53
Owenia fusiformis	0,31	1,18	0,46	5,41	60,95
Gammaridea gen. spp.	0,06	0,97	0,59	4,46	65,41
Группа II. Плотност	ъ поселения	я. Среднее	сходство 34,1	3 %	1
Portlandia arctica	94,21	6,79	1,25	19,90	19,90
Nuculana pernula	30,18	6,56	2,31	19,23	39,13

Таблица Г.2 – Разложение среднего внутригруппового сходства по вкладам отдельных видов для группировок макрозообентоса, выделенных на исследованных акваториях

r - C					
Таксон	А или В	$\overline{\mathcal{S}_i}$	$\delta_i/SD(\delta_i)$	<i>CN</i> , %	<i>CCN</i> , %
Nereis sp.	7.89	2,80	0.87	8,19	47,33
Cylichnoides occultus	41,75	2,69	0.56	7,88	55.21
Lagis koreni	15,79	2,47	0,75	7,24	62,45
Группа II. Бис	масса. Сре	днее сходст	гво 37,46 %	, , , , , , , , , , , , , , , , , , ,	
Portlandia arctica	24,06	10,82	1,69	28,87	28,87
Nuculana pernula	5,24	8,62	2,12	23,02	51,89
Lagis koreni	9,81	4,87	0,82	13,00	64,89
Cylichnoides occultus	0,36	2,30	0,70	6,15	71,03
Nereis sp.	0,35	1,83	0,79	4,87	75,91
Группа III. Плотност	ть поселени	я. Среднее	сходство 46,5	6%	
Peringia ulvae	1779,61	16,87	1,73	36,23	36,23
Nereis sp.	67,20	8,64	1,30	18,56	54,79
Macoma balthica	47,63	6,85	1,14	14,70	69,49
Mya arenaria	113,19	6,22	1,14	13,37	82,86
Macoma calcarea	29,16	5,66	0,88	12,16	95,02
Группа III. Бис	омасса. Сре	днее сходс	тво 46,67 %		_
Peringia ulvae	19,90	10,88	1,63	23,31	23,31
Macoma balthica	11,11	10,18	1,14	21,81	45,12
Macoma calcarea	14,06	9,37	0,88	20,09	65,21
Mya arenaria	7,45	6,86	1,03	14,71	79,91
Nereis sp.	1,26	6,78	1,21	14,54	94,45
Группа IV. Плотност	гь поселени	я. Среднее	сходство 17,8	3 %	
Nuculana pernula	25,68	3,41	0,89	19,12	19,12
Astarte elliptica	36,50	2,78	0,78	15,61	34,73
Nereis sp.	5,83	1,22	0,53	6,84	41,57
Ciliatocardium ciliatum	4,50	1,03	0,46	5,76	47,33
Astarte crenata	18,33	0,67	0,28	3,74	51,07
Группа IV. Бис	омасса. Сре	днее сходс	тво 13,95 %		
Astarte elliptica	8,45	2,49	0,66	17,87	17,87
Nuculana pernula	1,41	2,47	0,71	17,74	35,61
Nereis sp.	0,48	1,18	0,49	8,43	44,04
Gammaridea gen. spp.	0,38	0,69	0,38	4,92	48,96
Ciliatocardium ciliatum	5,65	0,65	0,32	4,65	53,61
Группа III. Био	омасса. Сре	днее сходс	тво 32,66 %		
Ophiura sarsii vadicola	53,48	5,72	1,31	19,88	19,88
Ennucula tenuis	4,82	3,26	1,23	11,34	31,22
Scalibregma inflatum	8,27	3,12	1,01	10,84	42,05
Scoloplos armiger	3,52	2,61	1,17	9,08	51,13
Macoma tokoyensis	96,28	2,56	0,48	8,90	60,03
]	Венинский	полигон			
Группа І. Плотности	ь поселения	и. Среднее с	сходство 17,95	5 %	
Diastylis bidentata	463,13	2,22	0,62	12,39	12,39
Echinarachnius parma	18,54	2,01	0,61	11,19	23,58
Glycera capitata	4,38	1,75	0,80	9,74	33,32
Nephtys ciliata	7,71	1,61	0,65	8,99	42,31
Wecomedon minusculus	20,42	1,41	0,62	7,85	50,15
Группа I. Био	масса. Сред	цнее сходст	во 16,08 %	•	
Echinarachnius parma	295,72	3,65	0,58	22,68	22,68

	1			r			
Таксон	А или В	$\overline{\mathcal{S}_i}$	$\delta_i/SD(\delta_i)$	<i>CN</i> , %	<i>CCN</i> , %		
Diastylis bidentata	8,08	1,18	0,65	7,31	29,99		
Nephtys ciliata	2,08	1,17	0,62	7,27	37,25		
Wecomedon minusculus	2,03	1,14	0,61	7,08	44,33		
Anonyx nugax	2,86	1,13	0,64	7,04	51,37		
Группа II. Плотность поселения. Среднее сходство 40,61 %							
Diastylis bidentata	12005,36	9,94	3,24	24,48	24,48		
Ampelisca macrocephala	307,86	3,81	3,03	9,39	33,87		
Ampelisca eschrichti	2822,50	3,09	0,82	7,60	41,47		
Protomedeia epimerata	275,36	2,70	0,90	6,65	48,12		
Ischyrocerus anguipes	188,21	2,58	1,36	6,35	54,47		
Группа II. Бис	масса. Сред	днее сходст	гво 35,45 %				
Diastylis bidentata	103,42	7,70	2,94	21,72	21,72		
Ampelisca macrocephala	6,09	3,61	4,26	10,18	31,89		
Anonyx nugax	15,48	3,19	1,43	8,99	40,88		
Ampelisca eschrichti	101,70	3,08	0,88	8,68	49,56		
Protomedeia epimerata	4,24	2,07	0,91	5,84	55,40		
Группа III. Плотност	гь поселени	я. Среднее	сходство 28,6	8 %			
Ampelisca macrocephala	120,00	1,83	1,57	6,37	6,37		
Wecomedon minusculus	127,05	1,28	0,95	4,47	10,84		
Chone duneri	23,18	1,20	0,93	4,19	15,03		
Ampelisca eschrichti	876,59	1,19	0,52	4,14	19,17		
Praxillella gracilis	23,64	1,13	0,96	3,92	23,10		
Группа III. Бие	омасса. Сре	днее сходс	тво 26,47 %				
Leieschara subgracilis	29,18	1,21	0,77	4,59	4,59		
Ampelisca macrocephala	7,35	1,21	1,57	4,58	9,17		
Epiactis arctica	28,16	1,19	0,75	4,49	13,66		
Chone duneri	5,11	1,07	0,88	4,05	17,71		
Ampelisca eschrichti	127,43	1,06	0,55	4,02	21,73		
Pai	йон платфој	рмы Лун-А					
Группа I. Плотность поселения. Среднее сходство 60,08 %							
Protomedeia epimerata	1614,85	7,12	6,91	11,84	11,84		
Diastylis bidentata	2436,36	6,53	4,05	10,85	22,69		
Orchomenella sp.	163,00	4,25	7,09	7,07	29,76		
Psammonyx kurilicus	285,18	3,72	2,45	6,18	35,94		
Bathymedon subcarinatus	87,88	2,96	2,04	4,91	40,85		
Группа I. Биомасса. Среднее сходство 55,03 %							
Epiactis arctica	47,91	4,41	1,99	8,01	8,01		
Halcampoides purpurea	17,99	4,40	4,30	8,00	16,01		
Serripes groenlandicus	206,25	4,01	0,95	7,28	23,29		
Protomedeia epimerata	5,61	3,24	8,18	5,89	29,18		
Halcampa sp.	12,02	3,16	1,91	5,74	34,93		
Группа II. Плотность поселения. Среднее сходство 60,72 %							
Diastylis bidentata	4564,05	7,83	6,23	12,89	12,89		
Protomedeia epimerata	310,71	3,68	7,77	6,07	18,96		
Psammonyx kurilicus	310,00	3,37	3,21	5,56	24,52		
Ischyrocerus sp.	211,90	3,08	6,78	5,07	29,58		
<i>Orchomenella</i> sp.	48,81	2,54	6,08	4,19	33,77		

Таксон	А или В	$\overline{\mathcal{S}_i}$	$\delta_i/SD(\delta_i)$	<i>CN</i> , %	<i>CCN</i> , %		
Группа II. Бис	масса. Сре	днее сходст	гво 51,40 %	1	1		
Echinarachnius parma	100,24	4,56	2,87	8,88	8,88		
Diastylis bidentata	17,71	3,53	9,91	6,86	15,73		
Epiactis arctica	30,81	3,29	1.50	6,40	22,14		
Halcampoides purpurea	21.77	3.28	1.54	6.38	28.51		
Halcampa sp.	11.70	3,13	2,65	6,09	34,60		
Группа III. Плотность поселения. Среднее сходство 59.42 %							
Diastylis bidentata	149,67	4,35	10,26	7,34	7,34		
Protomedeia epimerata	108,00	3,70	8,86	6,24	13,59		
Orchomenella sp.	66,00	3,53	18,87	5,96	19,55		
Ischyrocerus sp.	41,67	3,37	10,15	5,69	25,24		
Halcampoides purpurea	47,67	3,27	15,96	5,53	30,77		
Группа III. Би	омасса. Сре	днее сходс	тво 52,50 %	, , , , , , , , , , , , , , , , , , ,			
Echinarachnius parma	368,92	8,07	2,35	15,37	15,37		
Halcampoides purpurea	25,12	5,39	9,35	10,26	25,63		
Halcampa sp.	16,62	4,23	3,72	8,05	33,69		
Nephtys sp.	2,41	2,52	3,97	4,80	38,48		
Diastylis bidentata	0,94	2,39	8,26	4,55	43,03		
Район пл	атформы П	А-А (Моли	икпак)	1 -	_		
Группа І. Плотность поселения. Среднее сходство 49.36 %							
Echinarachnius parma	66,90	5,67	3,61	11,48	11,48		
Ophelia limacina	25,71	5,15	4,56	10,44	21,93		
Archaeomysis grebnitzkii	12,62	4,00	4,56	8,11	30,04		
Anonyx lilljeborgi	11,43	3,91	4,24	7,93	37,96		
Glycera capitata	13,57	3,00	1,49	6,07	44,04		
Группа I. Биомасса. Среднее сходство 49,12 %							
Echinarachnius parma	347,13	12,24	5,10	24,93	24,93		
Ophelia limacina	6,43	6,26	5,22	12,74	37,67		
Anonyx lilljeborgi	2,82	4,74	3,07	9,64	47,31		
Archaeomysis grebnitzkii	0,60	3,23	3,05	6,57	53,88		
Tridonta rollandi	10,70	2,27	0,90	4,62	58,50		
Группа II. Плотност	ь поселения	я. Среднее	сходство 59,42	3 %			
Ischyrocerus sp.	9989,54	6,74	3,49	10,75	10,75		
Diastylis bidentata	904,72	3,73	4,30	5,95	16,70		
Ampharete crassiseta	268,24	3,34	7,41	5,33	22,03		
Pleusymtes uncigera	708,33	3,31	4,29	5,27	27,30		
Anonyx lilljeborgi	132,13	2,82	8,68	4,49	31,80		
Группа II. Биомасса. Среднее сходство 62,19 %							
Ampharete crassiseta	189,41	6,33	7,38	10,64	10,64		
Pareugyrioides dalli	1085,44	5,89	1,37	9,92	20,56		
Nephtys caeca	31,84	3,47	3,57	5,83	26,39		
Anonyx lilljeborgi	9,15	2,86	7,04	4,82	31,21		
Ischyrocerus sp.	11,87	2,53	3,01	4,25	35,47		
Группа III. Плотност	гь поселени	я. Среднее	сходство 44,7	5 %	1		
Echinarachnius parma	248,81	4,63	1,44	9,66	9,66		
Diastylis bidentata	1286,43	3,82	3,29	7,99	17,65		
Grandifoxus longirostris	31,43	3,43	2,75	7,16	24,81		
Ischyrocerus sp.	43,10	3,13	3,90	6,54	31,35		

продолжение таблицы 1.2							
Таксон	А или В	$\overline{\mathcal{S}}_i$	$\delta_i/SD(\delta_i)$	<i>CN</i> , %	<i>CCN</i> , %		
Anonyx lilljeborgi	10,71	2,77	6,42	5,79	37,13		
Группа III. Биомасса. Среднее сходство 39,52 %							
Echinarachnius parma	2181,20	13,30	1,42	29,73	29,73		
Anonyx lilljeborgi	1,41	2,78	3,10	6,21	35,94		
Nephtys sp.	1,69	2,77	4,20	6,18	42,13		
Megangulus luteus	26,60	1,80	0,56	4,02	46,15		
Diastylis bidentata	3,33	1,73	2,41	3,87	50,01		
Pa	йон платфо	рмы ПА-Б	·				
Группа I. Плотност	ь поселения	 Среднее с 	сходство 47,82	2 %			
Protomedeia fasciata	2397,86	5,32	2,13	11,13	11,13		
Diastylis bidentata	162,62	3,88	7,61	8,12	19,25		
Anonyx lilljeborgi	56,67	2,75	2,77	5,75	24,99		
Glycera capitata	37,14	2,66	7,53	5,55	30,55		
Monoculodes zernovi	54,76	2,42	3,15	5,07	35,62		
Группа І. Био	масса. Сред	цнее сходст	тво 40,83 %				
Protomedeia fasciata	10,60	3,29	2,10	8,05	8,05		
Anonyx lilljeborgi	7,66	3,26	1,69	7,99	16,04		
Ophelia limacina	2,97	3,06	4,10	7,49	23,53		
Echinarachnius parma	29,71	2,85	1,36	6,97	30,50		
Diastylis bidentata	1,33	2,61	3,29	6,39	36,89		
Группа II. Плотност	ь поселения	я. Среднее	сходство 62,2	6 %			
Echinarachnius parma	115,74	6,33	6,75	10,17	10,17		
Eohaustorius eous eous	97,96	5,79	6,18	9,31	19,47		
Ophelia limacina	19,26	3,84	4,66	6,17	25,65		
Mactromeris polynyma	13,33	3,43	5,82	5,51	31,16		
Nephtys sp.	8,52	3,30	8,08	5,30	36,46		
Группа II. Бис	масса. Сре	днее сходст	гво 62,19 %				
Echinarachnius parma	284,62	12,76	7,13	20,51	20,51		
Mactromeris polynyma	80,87	8,90	4,98	14,31	34,83		
Megangulus luteus	59,28	5,34	2,34	8,59	43,41		
Ophelia limacina	4,55	4,75	5,95	7,64	51,05		
<i>Nephtys</i> sp.	1,68	3,21	3,70	5,16	56,21		
Группа III. Плотность поселения. Среднее сходство 38,14 %							
Echinarachnius parma	85,24	6,13	2,66	16,07	16,07		
Ophelia limacina	15,48	4,60	5,50	12,07	28,13		
Anonyx lilljeborgi	14,52	4,38	6,18	11,49	39,63		
Glycera capitata	9,29	3,03	1,45	7,94	47,56		
<i>Nephtys</i> sp.	8,81	2,84	1,40	7,44	55,00		
Группа III. Биомасса. Среднее сходство 39,2 %							
Echinarachnius parma	949,46	13,54	1,60	34,27	34,27		
Anonyx lilljeborgi	3,14	5,00	5,62	12,64	46,91		
Ophelia limacina	3,28	4,44	4,10	11,24	58,14		
Nephtys sp.	4,04	2,93	1,09	7,41	65,55		
Glycera capitata	0,17	1,77	1,41	4,48	70,03		

Примечание. Приведены первые пять видов. Виды расположены в порядке уменьшения процентных вкладов; A — плотность поселения, экз./м²; B — биомасса, г/м²; δ_i — мера сходства, SD — стандартное отклонение, CN — процентный вклад, CCN — накопленные проценты.

Сравниваемые	Статистика В Уровень		Действительное			
группы	Статистика К	значимости, %	число перестановок			
Прибрежная акватория Владивостока (общая статистика <i>R</i> = 0,224/174, <i>p</i> =						
	0,005/	0,021)				
I–II	0,321/0,235	0,4/1,9	999			
I–III	0,263/0,260	2,1/01,9	999			
II–III	0,139/0,102	9,6/12,9	999			
Белое м	море (общая статисти	ка <i>R</i> = 0,813/0,799, <i>p</i> =	= 0,000)			
I–II	0,314/0,353	0,1	999			
I–III	0,747/0,813	0,1	999			
I–IV	0,299/0,268	0,1	999			
II–III	0,898/0,941	0,1	999			
II–IV	0,476/0,426	0,1	999			
III–IV	0,752/0,678	0,1	999			
Венинский полигон (общая статистика $R = 0,410/0,404, p = 0,001$)						
I–II	0,342/0,343	0,3/0,2	999			
I–III	0,441/0,393	0,1	999			
II–III	0,521/0,555	0,1/0,2	999			
Район платформы Лун-А (общая статистика <i>R</i> = 0,469/0,409, <i>p</i> = 0,001)						
I–II	0,362/0,351	0,2/0,3	999			
I–III	0,579/0,570	0,2/0,1	999			
II–III	0,523/0,257	0,1/4,3	999			
Район платформы ПА-А (Моликпак) (общая статистика <i>R</i> = 0,841/0,853, <i>p</i> = 0,001)						
I–II	0,918/0,953	0,1/5,0	999			
I–III	0,519/0,532	0,1	999			
II–III	0,921/0,914	0,1/0,2	999			
Район платформы ПА-Б (общая статистика <i>R</i> = 0,555/0,539, <i>p</i> = 0,001)						
I–II	0,793/0,738	0,1	999			
I–III	0,492/0,360	0,1/0,8	999			
II–III	0,457/0,551	0,2/0,3	999			

Таблица Г.3 – Оценка качества разбиений станций на группы: результаты процедуры ANOSIM

Примечание. Над чертой – для плотности, под чертой – для биомассы.

Construct	Кластер				
Станция	Ι	II	III	IV	
D0113	0,883	0,037	0,004	0,076	
D0115	0,967	0,013	0,000	0,019	
D0116	0,878	0,037	0,001	0,083	
D0211	0,924	0,048	0,003	0,025	
D0215	0,902	0,079	0,001	0,017	
D0216	0,965	0,025	0,001	0,009	
D0616	0,820	0,075	0,000	0,104	
D1016	0,840	0,063	0,053	0,044	
D1116	0,924	0,033	0,001	0,042	
D1216	0,756	0,228	0,002	0,015	
D1416	0,812	0,134	0,001	0,054	
K2614p	0,875	0,049	0,001	0,075	
K2615	0,475	0,230	0,005	0,290	
O1210	0,581	0,349	0,002	0,068	
O1215	0,431	0,159	0,002	0,408	
01216	0,603	0,179	0,006	0,213	
01313	0,727	0,052	0,003	0,217	
01713	0,920	0,030	0,000	0,049	
D1316	0,522	0,468	0,000	0,010	
D0013	0,591	0,105	0,012	0,293	
O0116s	0,491	0,123	0,024	0,363	
D0316	0,066	0,914	0,000	0,019	
D0415	0,152	0,822	0,000	0,025	
D0416	0,032	0,962	0,000	0,006	
D0516	0,027	0,966	0,000	0,007	
D1516	0,036	0,951	0,001	0,012	
D1616	0,021	0,970	0,000	0,008	
D1716	0,031	0,952	0,000	0,017	
D1816	0,036	0,940	0,001	0,024	
D1916	0,020	0,977	0,000	0,003	
K2116	0,019	0,966	0,000	0,015	
K2215	0,098	0,698	0,019	0,185	
K2216	0,145	0,787	0,004	0,064	
K2316	0,014	0,980	0,000	0,005	
K2415r	0,051	0,930	0,000	0,018	
K2416	0,004	0,994	0,000	0,002	
K2613	0,075	0,887	0,003	0,035	
K2613g	0,049	0,936	0,000	0,014	
K2616	0,301	0,510	0,009	0,180	
K2315	0,191	0,561	0,006	0,242	
D1y111	0,000	0,000	1,000	0,000	
D1y13o	0,000	0,000	1,000	0,000	
D1y13v	0,000	0,000	1,000	0,000	
D1y14l	0,000	0,000	1,000	0,000	
D1y14o	0,001	0,000	0,997	0,001	
D1y14v	0,000	0,000	1,000	0,000	

Таблица Г.4 – Результаты нечеткой классификации сообществ макрозообентоса – степень принадлежности станций к выделенным кластерам (экспоненциальный вес – 1,2)

	Кластер				
Станция	Ι	II	III	IV	
D1y151	0,000	0,000	1,000	0,000	
D1y15o	0,000	0,000	1,000	0,000	
D1y15v	0,000	0,000	1,000	0,000	
D1y16l	0,000	0,000	1,000	0,000	
D1y160	0,000	0,000	1,000	0,000	
D1y16v	0,000	0,000	1,000	0,000	
D2y111	0,000	0,000	1,000	0,000	
O0115s	0,000	0,000	1,000	0,000	
O0116k	0,000	0,000	1,000	0,000	
O0116p	0,146	0,092	0,635	0,127	
O0215s	0,133	0,042	0,684	0,141	
O0216k	0,001	0,000	0,999	0,000	
O0216p	0,002	0,001	0,995	0,001	
O0315s	0,125	0,047	0,670	0,157	
O0316k	0,008	0,003	0,985	0,005	
O0316p	0,002	0,001	0,997	0,001	
O0415s	0,035	0,013	0,917	0,035	
O0416p	0,041	0,015	0,897	0,046	
D0313	0,124	0,075	0,003	0,798	
K2314b	0,304	0,064	0,003	0,630	
K2515	0,019	0,011	0,000	0,970	
K2516	0,086	0,112	0,001	0,801	
O0515s	0,220	0,180	0,067	0,534	
01116	0,344	0,177	0,003	0,476	
O1315	0,033	0,018	0,001	0,948	
O1316	0,066	0,025	0,001	0,909	
O1415	0,030	0,011	0,001	0,958	
O1416	0,041	0,021	0,001	0,936	
01515	0,021	0,009	0,001	0,969	
O1516	0,061	0,023	0,003	0,913	
O1610	0,029	0,011	0,001	0,960	
01613	0,218	0,065	0,017	0,699	
01616	0,054	0,016	0,002	0,928	
O1710	0,097	0,082	0,002	0,819	
O1810	0,065	0,025	0,004	0,906	
01813	0,157	0,090	0,008	0,746	
O1910	0,081	0,029	0,008	0,883	
O1110	0,319	0,214	0,001	0,466	

Продолжение таблицы Г.4

Примечание. Жирным шрифтом выделены значения, указывающие на принадлежность к соответствующему кластеру, жирным курсивом отмечены величины, показывающие заметную (>0,1) близость к дополнительному кластеру.

Таблица Г.5 – Результаты теста Мантеля для оценки статистической значимости связи обилия видов макрозообентоса с факторами среды и пространственным расположением (число перестановок – 999) для акватории Белого моря

Сравниваемые матрицы дистанций	Статистика Мантеля <i>r</i>	95 % доверительные интервалы <i>r</i>	<i>р</i> (при рандомизации)
$\{ { m Обилие \ видов \ } S \} \sim \{ { m Факторы \ среды \ } E \}$	0,278/0,284	<u>0,213–0,343</u> 0,221–0,347	0,001
$\{ Oбилие видов S \} \sim \{ Pacположение в пространстве G \}$	0,213/0,203	<u>0,150–0,277</u> 0,139–0,267	0,001
$\{ \Phi$ акторы среды $\mathbf{E} \} \sim \{ P$ асположение в пространстве $\mathbf{G} \}$	0,305	0,227–0,383	0,001
Связь между тремя матрицами S, E и G одновременно	0,230/0,238	<u>0,169–0,292</u> 0,180–0,296	0,001

Примечание. Над чертой – для плотности, под чертой – для биомассы (где есть различия), *p* – вероятность справедливости нулевой гипотезы *H*₀ *r*=0.