4. Верификация

Верификация результатов моделирования выполнялась с помощью инструментальных измерений и спутниковой альтиметрии.

4.1 Верификация на основе данных расходов через пролив Лаперуза

Существует много исследований, посвященных исследованию водного транспорта через пролив Лаперуза. Некоторые из них основаны на результатах динамического [24] или диагностического [6; 9] моделирования.

Оценка течений и потока воды в проливе Лаперуза на основе прямых (инструментальных) и косвенных измерений проводилась с начала 20 века. В статье Супранович и др. [43] представлен обзор литературы, опубликованной до 50-х годов, и проведен анализ анализа инструментальных измерений во второй половине 50-х годов. Показано, что объемный расход из Японского моря в Охотское море в августе составляет 1.1 Св. Эти данные подтверждают измерения Aota [56, 57] и Tanaka [103]. Более поздние измерения Кантакова и Шевченко [19] показывают, что средний годовой объемный расход составляет около половины Свердрупа, а поток поступает из Японского моря в Охотское море, хотя зимой возможна обратная ситуация.

Сезонные изменения объёмного расхода через пролив Лаперуза оценивались с использованием разницы уровня моря, наблюдаемой в Крильоне (Сахалин, Россия), и Вакканае (Хоккайдо, Япония), в период 1975-1988 годов [95]. Объемный расход варьировался от -0.01 до 1.18 Св со среднегодовым значением 0.61 Св. Сезонный ход среднемесячных значений объемного расхода показывает унимодальное распределение с максимальным значением в летнее время (август) и минимум зимой (декабрь-февраль).

Объемный расход Теплого течения Соя оценивается на основе данных ADCP и высокочастотных радаров [71]. Оценки объемного расхода имеют минимум зимой и максимум осенью, с ежегодными средними значениями в диапазоне 0.94-1.04 Св. Модель Охотского моря 1/18 град показывает те же

107

результаты. Единственное отличие - относительно небольшой объем транспорта летом (таблица 4.1).

Месяц	Февраль	Июнь	Август	Октябрь	Ноябрь	Декабрь	Среднее
Модель Охотского моря 1/18°	0.10	0.68	0.67	0.67	0.70	0.55	0.49
Леонов [24]							0.42
Юрасов [53]	0.54		2.16				
Васильев и Дудка [6]					0.4		
Храпченков и Васильев [107]			0.98			0.63	
Aota [55]			1.3				
Aota [56, 57]		1.2	0.96	0.65			
Супранович и др. [43]			1.02				
Tanaka et al. [103]			1.18				
Saveliev et al. [95]	0.04	0.91	1.18	0.91	0.48	0.04	0.6

Таблица 4.1. Объёмный расход через пролив Лаперуза. Исторический обзор

Таблица 4.2. Объёмный расход через пролив Лаперуза. Исторический обзор

Месяц	Модель Охотского моря 1/18°	Saveliev et al. [95]
Январь	0.18	-0.1
Февраль	0.1	0.04
Март	0.2	0.25
Апрель	0.32	0.62
Май	0.51	0.73
Июнь	0.68	0.91
Июль	0.71	1.06
Август	0.67	1.18
Сентябрь	0.65	1.14
Октябрь	0.67	0.91
Ноябрь	0.7	0.48
Декабрь	0.55	0.04
Среднее	0.49	0.6

4.2 Верификация на основе инструментальных измерений

На шельфе острова Сахалин проводится множество инструментальных измерений течений [35; 36]. Нами было выбрано 8 долговременных станций,

где измерения проводились в течение нескольких месяцев (Таблица 4.3, Рисунок 4.4). Эти измерения проводились на нефтяной платформе в поверхностном 10 метровом слое. Из временных рядов была удалена приливная компонента. После чего эти данные сравнивались с результатами измерений за тот же период времени и в той же точке (Таблица 4.4, Рисунок 4.2, Рисунок 4.3).

N⁰	Координаты	Даты измерений	Период из-
	-		мерений
			(сутки)
1	143°34'; 52°54'30''	1) 11:40 14.07.87 - 4:10 09.08.87	109
		2) 12:50 12.08.87 - 6:20 30.08.87	
		3) 20:20 01.09.87 - 1:00 16.09.87;	
2	143°43'; 52°36'	1) 19:00 27.08.89 - 14:50 05.09.89;	44
		2) 12:20 24.09.89 - 10:50 08.10.89;	
		3) 20:13 12.10.89 - 10:43 20.10.89;	
		4) 16:30 30.10.89 - 13:00 16.11.89	
3	143°33'; 52°50'	10:00 22.06.89 - 21:30 08.08.89	47
4	143°42'; 52°24'	1) 23:15 15.07.91 - 15:30 13.08.91	73
		2) 20:30 17.08.91 - 23:45 30.09.91;	
		3) 0:00 01.10.91 - 13:15 02.10.91	
5	143° 39.78'; 52° 25.68'	17:00 23.07.97 - 0:00 30.09.97	68
6	143° 40.98'; 52° 30.66'	21:00 23.07.97 - 9:00 02.10.97	70
7	143° 40.41'; 52° 27.72'	15:20 12.07.98 - 19:20 02.10.98	81
8	143°29'22.86'' 52°54'03''	11:40 14.07.87 - 4:10 09.08.87	109

Таблица 4.3 Станции, инструментальных измерений

Таблица 4.4 Статистическая оценка сравнения между инструментальными

данными и результатами

N⁰	Средняя приведенная ошибка (MFE)		Коэффициент корреляции		
	скорость	Направление потока	скорость	Направление потока	
1	0.2746	0.0964	0.7996	0.7903	
2	0.2483	0.1071	0.4101	0.7112	
3	0.2360	0.1391	0.5554	0.7512	
4	0.3592	0.5534	0.4549	0.0532	
5	0.05	0.40	0.53	0.65	
6	0.07	0.29	0.60	0.76	
7	0.05	0.33	0.57	0.63	
8	0.09	0.35	0.21	0.58	

4.3 Верификация на основе спутниковой альтиметрии

Для верификации результатов моделирования был выбраны данные абсолютных геострофических течений (DT merged Global Ocean Gridded Absolute Geostrophic Velocities SSALTO/Duacs L4 product) с разрешением 1/4° по спутниковой горизонтали ИЗ банка данных альтиметрии AVISO ALTIMETRY. Результаты моделирования приводились к аналогичной сетке. Верификация проводилась следующим образом: в каждой точке пространства считался коэффициент корреляции по суточному ряду за период с 1993 по 2000 год. После этого проверялась значимость коэффициента корреляции (Рисунок 4.4). Зоны со значимыми коэффициентами корреляции соответствуют районам, где господствуют струйные течения: Курило-Камчатское течение, Срединное течение, обе ветви Северо-Охотского течения, обе ветви Восточно-Сахалинского течения, Западно-Камчатское течение.

Рисунок 4.1. Станции инструментальных измерений

Рисунок 4.2. Сравнение результатов инструментальных измерений и резуль-

татов моделирования

Рисунок 4.3. Сравнение результатов инструментальных измерений и резуль-

татов моделирования

Рисунок 4.4. Пространственное распределение коэффициента корреляции для и-компоненты скорости течений (вверху) и v-компоненты скорости течений (внизу). Цветом выделены районы со значимыми коэффициентами корреля-