1 Метеорологические условия

1.1 Синоптический обзор

Кинематическая карта, приведенная на рис. 1-1, отражает траектории циклонов (синий цвет) и антициклонов (красный цвет) в течение месяца. Положение центров приведено за срок 00 ВСВ каждых суток. За барическими объектами закреплен номер, по которому из ниже следующей таблицы можно определить точные координаты и давление в центре объектов в срок 00 ВСВ каждых суток.

I декада июля 2025 г.

Японское море

В первой половине декады над Японским морем располагалось поле повышенного давления. В период 6–7 июля над северной частью моря проследовала ложбина, основной циклон развивался над Хабаровским краем и северо-западной частью Охотского моря. Значительного усиления ветра и волн не наблюдалось: ветер не более 8–13 м/с, волнение – до 2 м. В тылу ложбины восстановилось поле высокого давления, оно сохранялось до конца декады.

Охотское море

В начале декады над Охотским морем располагался гребень тихоокеанского антициклона.

С 3 июля погодные условия определялись циклоном, который приближался с территории Хабаровского края. 4 июля циклон вышел на северо-западную часть моря с давлением в центре 990 гПа. Медленно двигаясь на восток, он заполнялся. Ветер на акватории моря усиливался до 9–14 м/с, волнение развивалось до 2 м. Циклон заполнился 6 июля над севером моря, втянувшись в циркуляцию следующего, более глубокого циклона. Последний вышел на северо-западную часть моря с давлением в центре 980 гПа. 7 июля оставался вблизи северо-западного побережья моря, начал заполняться. В дальнейшем перемещался на юго-восток со скоростью 30–40 км/ч. Циклон заполнился окончательно 9 числа вблизи центральной части Курильской гряды. 6–7 июля в период максимального развития циклона скорость ветра на акватории моря возрастала до 15–20 м/с, волнение развивалось до 3–4 м.

В конце декады, 9 июля, с Хабаровского края переместился антициклон с давлением в центре 1022 гПа. Незначительно углубляясь, он двигался на юго-восток со скоростью 20–30 км/ч. 10 числа находился над юго-восточной частью акватории с давлением в центре 1024 гПа.

Берингово море

Циклон, который переместился на юго-западную часть моря 29 июня, медленно двигался в восточном направлении. Давление в его центре составляло 994–996 гПа. 2 июля он сменил направление движения на юго-восточное и вышел на акваторию Бристольского залива. Ветер в зоне циклона не превышал 9–14 м/с, волнение – не более 2 м.

2 июля над западной частью моря в ложбине северного циклона образовался молодой циклон глубиной 996 гПа. Он двигался на восток, северо-восток без развития, заполнился 4 числа над северо-западной частью моря. Значительного усиления ветра и волн циклон не вызвал.

Еще один циклон образовался 4 июля на юге моря вблизи центральных островов Алеутской гряды. Двигался медленно на восток, северо-восток, давление в его центре составляло 998—1000 гПа. 5 числа циклон находился на юго-востоке акватории с давлением в центре 1002 гПа. Усиления ветра и волн в зоне циклона не наблюдалось.

7 июля с Чукотки на западную часть Берингова моря вышел антициклон с давлением в центре 1020 гПа. Разрушаясь, оставался над этим районом моря до 9 числа.

10 июля с севера на акваторию моря вышел циклон с давлением в центре 1004 гПа. Медленно двигался на юг, не меняя интенсивности. Циклон не вызвал значительного усиления ветра и волн.

Северо-западная часть Тихого океана

В течение декады над юго-восточной частью района располагался обширный гребень тихоокеанского антициклона.

2 июля с Охотского моря на акваторию северо-западной части Тихого океана переместилось ядро с давлением в центре 1018 гПа. Двигаясь на юго-восток со скоростью 20–30 км/ч, 4 июля вышло в район с координатами 35° с. ш., 169° в. д. с давлением в центре 1022 гПа. В дальнейшем перемещалось медленно на восток, 6 числа вошло в систему тихоокеанского антициклона, потеряв собственную циркуляцию.

4 июля в район с координатами 30° с. ш., 145° в. д. вышел тропический шторм MUN с давлением в центре 996 гПа. Медленно двигался на север, 5 июля повернул на северо-восток, восток; 6 июля, углубившись до 990 гПа, получил статус сильного тропического циклона. Максимальный ветер вблизи его центра достигал 25 м/c, волнение развивалось до 3-4 м. 7 числа циклон начал заполняться, в срок 00 BCB 8 июля трансформировался в циклон умеренных широт и продолжал заполняться. В конце декады находился в районе с координатами 47° с. ш., 177° в. д с давлением в центре 1004 гПа.

5 июля с Охотского моря через северные Курилы вышел циклон глубиной 1000 гПа. Смещаясь на восток со скоростью 30 км/ч, 7 июля по 50-й широте переместился в западное полушарие с давлением в центре 1002 гПа. Значительного усиления ветра и волн в зоне циклона не наблюдалось: скорость ветра на северной периферии достигала 10–15 м/с, волнение – до 2 м.

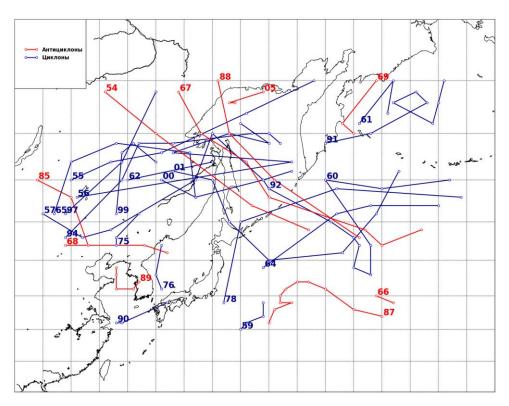


Рис. 1-1 Траектории движения циклонов и антициклонов в июле, траектории циклонов — синий трек, антициклонов — красный трек

T0										
Координаты центров циклонов и антициклонов и давление в их центрах в июле (в срок 00 ВСВ)										
	Циклоны				Антициклоны					
Номер	Дата	Широта	Долгота	Давление	Номер	Дата	Широта	Долгота	Давление	
55	27.06.2025	50	115	1002	54	30.06.2025	59	121	1014	
55	28.06.2025	52	122	998	54	01.07.2025	55	130	1014	
55	29.06.2025	53	131	998	54	02.07.2025	47	147	1016	
55	30.06.2025	57	146	1000	54	03.07.2025	44	157	1020	
55	01.07.2025	60	158	996	66	04.07.2025	35	169	1022	
56	01.07.2025	48	116	996	66	05.07.2025	34	172	1022	
56	02.07.2025	52	154	990	67	08.07.2025	59	134	1016	
56	03.07.2025	53	133	990	67	09.07.2025	55	138	1022	
56	04.07.2025	55	143	990	67	10.07.2025	52	146	1022	
56	05.07.2025	54	150	992	67	11.07.2025	48	150	1024	
56	06.07.2025	56	145	996	67	12.07.2025	44	167	1022	
57	03.07.2025	46	110	996	67	13.07.2025	42	170	1024	
57	04.07.2025	43	117	998	67	14.07.2025	44	177	1024	
57	05.07.2025	44	122	996	68	06.07.2025	42	114	1008	
57	06.07.2025	50	137	982	68	07.07.2025	42	128	1008	
57	07.07.2025	55	140	986	68	08.07.2025	41	132	1012	
57	08.07.2025	50	149	1000	69	07.07.2025	60	169	1020	
57	09.07.2025	49	150	1008	69	08.07.2025	56	163	1018	
59	04.07.2025	30	145	996	69	09.07.2025	55	165	1014	
59	05.07.2025	31	146	996	85	12.07.2025	50	109	1014	
59	06.07.2025	32	149	992	85	13.07.2025	48	115	1010	
59	07.07.2025	34	149	990	85	14.07.2025	42	118	1004	
60	05.07.2025	50	160	1000	87	13.07.2025	32	170	1024	
60	06.07.2025	49	170	1000	87	14.07.2025	33	165	1024	
60	07.07.2025	50	182	1002	87	15.07.2025	36	160	1024	
61	02.07.2025	56	166	996	87	16.07.2025	37	157	1026	
61	03.07.2025	60	172	998	87	17.07.2025	37	155	1026	
61	04.07.2025	57	171	1000	87	18.07.2025	36	153	1022	
62	04.07.2025	50	125	996	87	19.07.2025	35	152	1022	
62	05.07.2025	52	140	996	87	20.07.2025	34	152	1022	
64	08.07.2025	39	149	996	87	21.07.2025	34	154	1022	
64	09.07.2025	46	162	998	87	22.07.2025	33	151	1020	
64	10.07.2025	47	168	996	87	23.07.2025	31	150	1018	
64	11.07.2025	47	180	1004	88	17.07.2025	60	141	1012	
65	09.07.2025	46	112	1002	88	18.07.2025	55	143	1012	
65	10.07.2025	52	115	998	88	19.07.2025	50	151	1012	
65	11.07.2025	54	123	996	88	20.07.2025	43	166	1016	
65	12.07.2025	53	136	998	89	23.07.2025	37	127	1014	
65	13.07.2025	48	137	996	89	24.07.2025	36	126	1012	
75	16.07.2025	42	123	998	89	25.07.2025	36	123	1010	
75	17.07.2025	43	123	1002	89	26.07.2025	38	123	1008	
75	18.07.2025	46	127	1004	89	27.07.2025	39	123	1008	
					Ī	l -			_	

Координаты центров циклонов и антициклонов и давление в их центрах в июле (в срок 00 ВСВ) Циклоны Антициклоны Долгота Номер Широта Долгота Давление Номер Дата Широта Дата Давление 25.07.2025 51 133 1004 1 1006 1 26.07.2025 50 140 1 27.07.2025 45 143 1004 28.07.2025 40 150 1000 1 1 29.07.2025 41 163 1000 30.07.2025 46 169 1000 1 1 31.07.2025 51 173 998

II декада июля 2025 г.

Японское море

В начале второй декады над Японским морем наблюдалось поле высокого давления.

14 июля на юго-западе акватории отмечался активный циклогенез. Вблизи побережья Кореи образовался циклон с давлением в центре 992 гПа. Его пополнила тропическая депрессия, которая без развития, тоже с давлением в центре 992 гПа, вышла на западную часть о. Хонсю. Наблюдалось кратковременное углубление циклона до 988 гПа. В дальнейшем он перемещался на север. 16 числа заполнился у южного побережья Приморского края. Значительного усиления ветра и волн не отмечалось.

В период 17-19 июля погодные условия определялись противостоянием барической ложбины, пролегающей вдоль западного побережья моря, в области которой располагался активный полярный фронт, и гребнем тихоокеанского антициклона. Что обуславливало относительно напряженные для лета барические градиенты. Скорость ветра составляла 8-13 м/с, волнение – до 2 м.

Охотское море

В начале декады над Охотским морем сохранялось поле высокого давления. Антициклон, который располагался на юго-востоке моря с давлением 1024 гПа, 12 числа переместился в Тихий океан.

12 июля на север акватории с Хабаровского края вышел циклон с давлением в центре 996 гПа. Углубившись до 994 гПа, он двигался на восток вдоль северного побережья, 13 числа через залив Шелихова покинул акваторию моря. Кроме этого вблизи севера Сахалина над материком и акваторией моря развивались циклоны, их глубина — в пределах 996—998 гПа. В период 11—12 июля на юго-восточной периферии циклонов ветер над Охотским морем был сильный до 12—17 м/с, волнение — до 2—3 м.

15 числа на южную часть Охотского моря вышел тропический циклон NARI с давлением в центре 998 гПа. К этому времени он трансформировался в полярно фронтальный циклон, двигался на северо-восток со скоростью 70 км/ч. Через сутки, 16 числа через центральные Курилы переместился в северо-западную часть Тихого океана с давлением в центре 1002 гПа. Существенного усиления ветра в Охотском море циклон не вызвал.

17 июля на акваторию моря с севера скатилось ядро с давлением в центре 1012 гПа. Оно медленно двигалось на юго-восток без изменения интенсивности, 19 числа через Курилы переместилось в Тихий океан.

Берингово море

Циклон глубиной 1004 гПа, который накануне вышел на акваторию Берингова моря с Колымы, продолжал двигаться в юго-восточном направлении, 13 июля через восточные Алеуты переместился в Тихий океан с давлением в центре 1008 гПа. Сильный ветер до 12-17 м/с наблюдался в тылу циклона только над северо-западной частью моря 11 июля, волнение развивалось до 3-4 м.

15 июля на юго-западную часть акватории вышел циклон с давлением в центре 992 гПа. Двигаясь на восток, северо-восток со скоростью 20–30 км/ч, он углублялся, замедлял движение. В конце декады находился в районе с координатами 60° с. ш., 180° д. с давлением в центре 998 гПа. Минимальное давление в его центре отмечалось 16 июля, составляло 986 гПа. Скорость ветра в зоне действия циклона достигала 15–20 м/с, волнение развивалось до 3–4 м.

Северо-западная часть Тихого океана

11 июля с Охотского моря в северо-западную часть Тихого океана вышел антициклон с давлением 1022 гПа. Без развития двигался на восток, юго-восток со скоростью 20-30 км/ч, 14 июля по 43-й параллели переместился в западное полушарие с давлением в центре 1024 гПа.

12 числа в гребне тихоокеанского антициклона в районе с координатами 42° с. ш.,170° в. д. образовалось ядро мощностью 1024 гПа. Оно медленно двигалось на запад, в конце декады находилось в районе с координатами 34° с. ш., 154° в. д. с давлением в центре 1022 гПа. Максимальное давление в центре антициклона отмечалось 15–16 июля, составляло 1026 гПа. В этот период под его влиянием находилась большая часть района.

13 июля в район с координатами 30° с. ш., 143° в. д. вышел тропический шторм NARI с давлением в центре 994 гПа. К сроку 18 ВСВ 13 июля он углубился до 985 гПа, получил статус сильного тропического шторма. В этот период максимальная скорость вблизи его центра достигала 25 м/с, волнение развивалось до 5–6 м. Двигаясь на север со скоростью 40–50 км/ч, 14 июля – со скоростью 60 км/ч, 15 июля NARI через о. Хоккайдо вышел на юг Охотского моря с давлением в центре 998 гПа. К этому времени он втянулся в систему полярного фронта, трансформировался в циклон умеренных широт (термически горизонтально асимметричный). 16 числа циклон вернулся на акваторию Тихого океана с давлением в центре 1008 гПа. Над Тихим океаном двигался преимущественно на восток со скоростью 60 км/ч, незначительно углубляясь. В конце суток 16 июля по 46-й параллели он переместился в западное полушарие с давлением в центре 1002 гПа. Вплоть до 15 июля на его южной периферии на границе с антициклоном ветер оставался сильным до 15–20 м/с, волнение – до 4–5 м.

III декада июля 2025 г.

Японское море

В первой половине декады над Японским морем преобладало поле повышенного давления. В период 26–27 июля по северу моря в восточном направлении проследовал неглубокий циклон с давлением в центре 1004 гПа, не вызвавший значительного ухудшения погоды. В дальнейшем восстановилось малоградиентное поле повышенного давления.

Охотское море

22 июля с Хабаровского края на северо-запад Охотского моря вышел циклон с давлением в центре 994 гПа (рис. 1-2). Без изменения интенсивности он медленно двигался на восток, юговосток, не вызывая значительного усиления ветра и волн. Циклон заполнился 25 июля вблизи западного побережья Камчатки.

25 числа над северо-западной частью моря образовалось малоподвижное ядро с давлением в центре $1010~\mathrm{r\Pi}a$. Оставалось над севером акватории до конца декады с давлением в центре $1010-1012~\mathrm{r\Pi}a$.

В период 29–30 июля над южной частью моря проследовал неглубокий циклон с давлением в центре 1006–1008 гПа. 31 числа на северо-запад акватории с Хабаровского края вышел еще один циклон с давлением в центре 998 гПа. Без изменения интенсивности он двигался на северо-восток со скоростью 20 км/ч. Значительного усиления ветра и волн циклоны не вызвали.

Берингово море

Циклон, который в конце второй декады находился над севером акватории, в конце суток 21 июля заполнился. Ветер до 15–17 м/с и волнение до 2 м отмечались только в начале суток на юго-восточной периферии от центра.

Большую часть декады погодные условия определялись полем повышенного давления – гребнем тихоокеанского антициклона. Центр антициклона располагался над северо-восточной частью океана. 27 июля на юг моря с Тихого океана переместился антициклон с давлением в центре 1030 гПа. Медленно двигался на восток, разрушался, в конце декады находился на крайнем юго-востоке моря с давлением в центре 1018—1020 гПа.

Северо-западная часть Тихого океана

21 июля с Охотского моря на акваторию района переместился неглубокий циклон с давлением в центре 1006 гПа. Без развития, он медленно двигался на восток, юго-восток, 25 июля развернулся на север — движение на восток блокировалось малоподвижным мощным антициклоном. 28 числа циклон вышел на Камчатку, где и заполнился. Значительного усиления ветра и волн не наблюдалось.

Малоподвижное ядро, большую часть декады расположенное примерно в районе с координатами 31° с. ш., 150° в. д. с давлением в центре 1020 гПа, и гребень тихоокеанского антициклона постепенно разрушались. Окончательно уступили место циклонической деятельности 27 числа.

27 июля со стороны Татарского пролива через о. Хоккайдо в северо-западную часть Тихого океана вышел циклон с давлением в центре 1002 гПа. Он двигался на северо-восток со скоростью 30–40 км/ч, углублялся. В конце декады находился над центральной частью Алеутской гряды глубиной 996 гПа. Ветер в зоне циклона не превышал 10–15 м/с, волнение развивалось до 2–3 м.

В конце декады, 29-31 июля, в тропической зоне океана южнее 30° с. ш., на долготе $142-143^{\circ}$ в. д. находился сильный тропический шторм KROSA с давлением в центре 980-985 гПа. Максимальный ветер в зоне сильного тропического шторма -27 м/с, штормовой ветер до 25 м/с отмечался в радиусе 120-150 морских миль от центра. Волнение развивалось до 4-5 м. В срок 00 ВСВ 31 июля KROSA вышел на акваторию района, в район с координатами 30° с. ш., 143° в. д. с давлением в центре 980 гПа, продолжал медленно двигаться на север. Максимальная скорость ветра к этому времени уменьшилась до 25 м/с.

30 июля на юге района на полярном фронте образовался волновой циклон с давлением в центре 1002 гПа. Двигаясь на восток, северо-восток со скоростью 40-50 км/ч, циклон углублялся. В конце декады находился в районе с координатами 44° с. ш., 175° в. д. с давлением в центре 992 гПа. Скорость ветра в зоне действия циклона возрасла до 15-20 м/с, волнение – до 4-5 м.

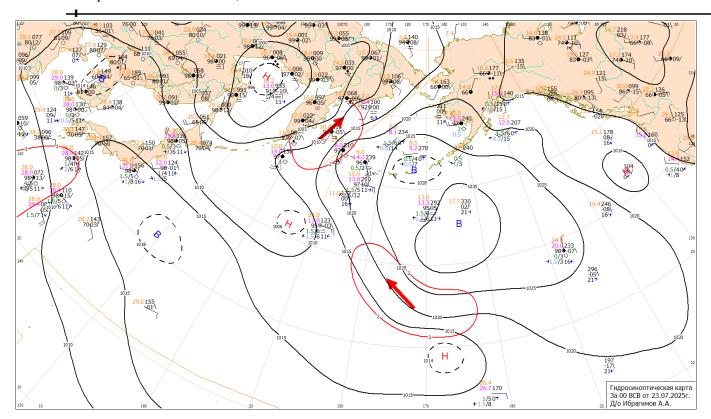


Рис. 1-2 Приземная карта за 00 BCB 23 июля 2025 г.

1.2 Анализ термобарических полей

Карты термобарических полей месячного разрешения над районом обзора построены на основе данных реанализа NCEP/NCAR, приведены ниже на рис. 1-3–1-5. Анализ термобарических полей выполнен на базе средних за месяц карт барической топографии для стандартного изобарического уровня 500 гПа, давления на уровне моря и температуры воздуха на стандартном изобарическом уровне 850 гПа. Аномалии рассчитаны относительно средних многолетних значений за период 1981–2010 гг.

Региональный обзор

В июле атмосферные процессы над регионом имели преимущественно зональный характер, особенно в умеренных широтах. Относительно климатической нормы тропосфера над умеренными широтами и тропиками оставалась теплой. Аномалии геопотенциальных высот H_{500} над умеренными широтами региона достигали +6...+8 дам. Над тропической зоной, кроме тропической зоны над Тихим океаном вблизи Юго-Восточной Азии, высоты изобарической поверхности H_{500} тоже были выше нормы на +1...+2 дам. Это обусловило значительный подъем к высоким широтам тропического пояса высокого давления и зоны западно-восточного переноса умеренных широт (следовательно, и высотной фронтальной зоны умеренных широт). Над арктическим бассейном умеренный западно-восточный перенос сохранился, но знак аномалий геопотенциальных высот H_{500} сменился на положительный — тропосфера была относительно теплой. Полярная зона региона, наоборот, находилась под воздействием относительно прохладных воздушных масс, здесь преобладали отрицательные аномалии геопотенциальных высот H_{500} , до -1...-2 дам. Такое распределение аномалий (следовательно, и термических полей) в высоких широтах не способствовало активности фронтальной арктической системы (рис. 1-3).

земной поверхности над Восточной Азией циклонические системы были доминирующими в течение месяца. Активность циклонов превышала климатическую, что наиболее заметно над бассейнами Оби, Енисея и Лены. Над перечисленными районами ниже нормы на 2-4 гПа. Циклоническая активность также атмосферное давление распространялась на дальневосточные моря, Охотское и восточную половину Берингова. Над Охотским морем атмосферное давление в среднем за месяц ниже нормы на 3-5 гПа, над восточной частью Берингова моря – на 1-3 гПа. Над тропической зоной Тихого океана вблизи юго-восточного побережья Китая наблюдался очень активный тропический циклогенез, здесь сформировался обширный очаг отрицательных аномалий атмосферного давления до -5 гПа (рис. 1-4). Тихоокеанский антициклон, располагаясь традиционно в западном полушарии, оставался хорошо развитым. Его мощность и мощность гребней, ориентированных на Японию, юг Японского моря и Аляску, превышали климатическую на 1-2 гПа. Господство антициклона было ограничено лишь над Охотским морем, восточной частью Берингова и севером Японского моря.

Японское море

В средней тропосфере над большей частью Японского моря наблюдался устойчивый западно-восточный перенос воздуха, юг акватории находился под воздействием субтропического гребня. Воздушная масса над всей акваторией была теплая, геопотенциальные высоты поверхности H_{500} выше нормы на 3-8 дам.

У земной поверхности над большей частью моря преобладало поле пониженного атмосферного давления, кроме юго-востока акватории, куда распространялся гребень тихоокеанского антициклона. Фон атмосферного давления значимо отличался от нормы лишь над севером моря, здесь сформировались отрицательные аномалии атмосферного давления до -1...-4 гПа.

Температура воздуха на уровне H_{850} (нижняя тропосфера) над морем была распределена от $+20~^{\circ}$ С на юге до $+14~^{\circ}$ С на севере. Это состояние выше нормы на $2-4~^{\circ}$ С. В течение месяца температура воздуха над акваторией моря повысилась на $3-4~^{\circ}$ С.

Охотское море

В средней тропосфере над Охотским морем в течение месяца преобладал западновосточный перенос воздуха, над южной частью акватории он был относительно сильным. Над большей частью акватории воздушная масса была теплой – преобладали положительные аномалии геопотенциальных высот поверхности H_{500} . Над югом моря аномалии достигали +7...+8 дам. Крайние северные районы моря оставались в зоне холодного воздуха, его свойства были незначительно холоднее нормы (аномалии геопотенциальных высот поверхности H_{500} слабые отрицательные до -1 дам).

У земной поверхности вся акватория моря оставалась под воздействием циклонического поля; фон атмосферного давления ниже нормы на 2-5 г Π а.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от +16 °C на юге до +7...+9 °C на северо-востоке. Над большей, южной частью акватории это состояние превышает норму на 1–4 °C, над севером моря – близко к норме. В течение месяца температура воздуха над морем повысилась на 2–4 °C.

Берингово море

В средней тропосфере над западной частью Берингова моря располагалась барическая ложбина, геопотенциальные высоты поверхности H_{500} здесь незначительно ниже нормы (аномалии до -1 дам). Остальная акватория находилась в области пологого гребня, обеспеченного теплым воздухом, с аномалиями геопотенциальных высот поверхности H_{500} до +2...+4 дам.

У поверхности земли западная половина акватории оставалась в области поля низкого давления, здесь фон атмосферного давления ниже нормы на 1–3 гПа. Восточная часть – в поле повышенного атмосферного давления со слабыми положительными аномалиями давления.

Температура воздуха в нижнем слое тропосферы на уровне H_{850} над морем распределена от +5 до +8 °C. Это состояние для центральной и юго-восточной частей моря на 1–2 °C выше нормы, для северо-западной, северной части — близко к норме и незначительно ниже. За месяц температура воздуха над морем повысилась на 2–4 °C.

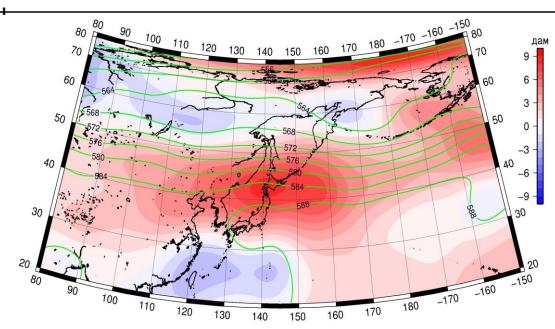


Рис. 1-3 Среднее поле H_{500} (изогипсы) и его аномалии (изополосы) в июле 2025 г. (дам)

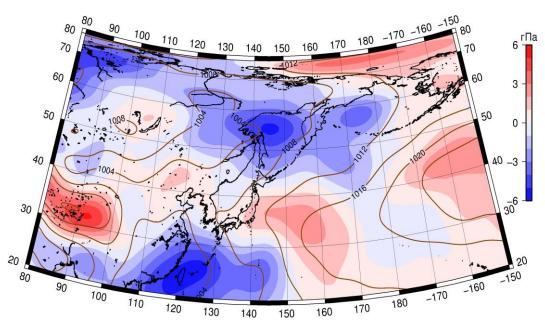


Рис. 1-4 Среднее поле атмосферного давления у поверхности земли (изобары) и его аномалии (изополосы) в июле 2025 г. (гПа)

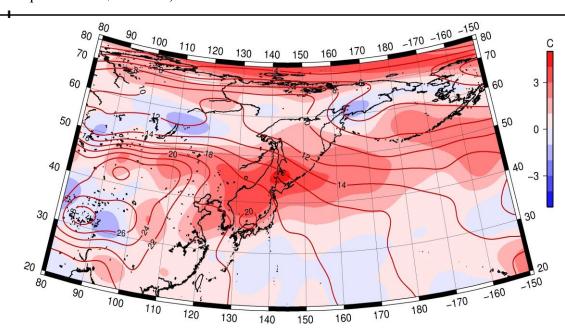


Рис. 1-5 Среднее поле T_{850} (изотермы) и его аномалии (изополосы) в июле 2025 г. (°С)

1.3 Региональные индексы циркуляции атмосферы

1.3.1 Зональный и меридиональный перенос воздуха над II е. с. р.

Характеристика основных воздушных течений в средней и нижней тропосфере за июль 2025 г. выполнена на основе индексов атмосферной циркуляции, приведенных ниже в таблице и на рис. 1-6-1-8. В данном разделе для характеристики индексов принята следующая терминология: норма — ± 0.3 STD относительно нормы; незначительное отклонение от нормы — $\pm (0.4$ -0.7)STD; значительное отклонение от нормы — ≥ 2.0 STD. Аномалии рассчитаны относительно средних многолетних значений (нормы) за период 1981-2010 гг.

Японское море

В июне над Японским морем во всем слое тропосферы доминировал западно-восточный перенос воздуха (значения зональных индексов положительные). Его интенсивность в средней тропосфере была близка к норме, в нижнем слое — превышала норму (Кz равен 0,1STD и 1,1STD соответственно в средней тропосфере и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над акваторией моря была близкой к климатической (|Km| равен 0,0STD), при этом межширотный обмен был нарушен относительно нормы в пользу южной компоненты обмена (Кm составлял 0,9STD); у поверхности земли интенсивность меридиональных движений воздуха была слабой, что определялось деградацией южной составляющей обмена (|Km| равен -0,7STD, Km - -0,6STD). В среднем за месяц во всем слое тропосферы преобладали движения воздуха с юга (значения меридиональных индексов положительные).

Охотское море

Над Охотским морем во всем слое тропосферы сохранялось преобладание движений воздуха с запада на восток (значения зональных индексов положительные), их интенсивность превышала норму, в нижнем слое — незначительно (Кz равен 1,5STD и 0,5STD соответственно в среднем слое и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над Охотским морем была незначительно слабее нормы, однако многолетний баланс между меридиональными составляющими близок к норме (|Km| равен -0,6STD, Km-0,0STD). У поверхности земли интенсивность межширотного обмена близка к климатической, многолетний баланс между меридиональными составляющими нарушен в пользу южной составляющей обмена (|Km| равен 0,3STD, Km-0,6STD). В среднем за месяц в средней тропосфере преобладали движения воздуха с севера (значение меридионального индекса отрицательное), в нижнем слое – с юга (значение индекса положительное).

Берингово море

Над Беринговым морем во всем слое тропосферы преобладал перенос воздуха с запада на восток (значения зональных индексов положительные); его интенсивность незначительно превышала норму в средней тропосфере и близка к норме в нижнем слое (Kz равен 0,4STD и 0,1STD соответственно в средней тропосфере и у поверхности земли).

Интенсивность межширотного обмена в средней тропосфере над Беринговым морем оставалась близкой к средней многолетней, многолетний баланс между меридиональными составляющими незначительно нарушен в пользу южной составляющей обмена (|Km| составлял -0,3STD, Km-0,7STD). У поверхности интенсивность межширотного обмена незначительно

превышала норму, что определялось усилением южной составляющей обмена (|Km| равен 0,7STD, Km-1,4STD). В течение месяца во всем слое тропосферы над морем преобладали движения воздуха с юга (значения меридиональных индексов положительные).

Индексы циркуляции атмосферы и их аномалии по II е. с. р.

II 16	Уровень	Май			Июнь			Июль		
Индекс*	(высота)	значение	ASTD**	STD**	значение	ASTD**	STD**	значение	ASTD**	STD**
Кz Ям		15474	0.0	3428	13407	1.4	2632	9713	0.1	2519
Кz Ом		7061	-0.3	2463	7754	1.1	2529	9378	1.5	2365
Кz Бм	500 гПа	7898	0.7	2969	7483	1.1	3172	7436	0.4	2603
Kz 35_50		17625	0.2	2112	13214	0.2	1068	10076	-0.3	1303
Kz 50_70		5061	-0.5	1504	6618	1.5	1103	5356	0.3	1452
Kz 35_70		10378	-0.6	714	9456	1.6	537	7078	-0.3	702
Кт Ям		475	1.1	1479	1083	1.0	1370	1287	0.9	1051
Кт Ом		930	0.9	1795	232	1.4	1387	-1257	0.0	1246
Кт Бм		-1713	-1.1	1305	-516	0.1	1155	400	0.7	726
Km 35_50	300 111a	-512	0.8	414	-280	0.3	379	233	0.0	169
Km 50_70		-569	-0.5	341	-664	-0.7	356	29	1.2	232
Km 35_70		-489	0.1	243	-448	-0.3	299	126	0.9	173
Кт Ям		2712	-0.1	1290	1696	-0.4	1017	1808	0.0	838
Кт Ом		1987	-0.8	1396	1579	-1.1	1698	2092	-0.6	1384
Кт Бм		3343	-0.1	1521	3880	0.3	1368	2635	-0.3	1193
Km 35_50		3444	0.1	657	2353	-0.9	486	1375	-1.3	645
Km 50_70		3071	-0.1	667	2925	-0.5	764	1562	-1.8	596
Km 35_70		3263	0.1	528	2662	-0.8	568	1459	-1.9	539
Кz Ям		3752	0.2	1188	4252	2.3	1091	3098	1.1	1195
Кz Ом		763	0.2	824	2146	1.3	838	1822	0.5	1210
Кz Бм		1573	1.0	1358	2251	1.1	1345	1953	0.1	1330
Kz 35_50		3744	0.8	1117	3387	1.7	926	2763	1.1	772
Kz 50_70		-812	0.1	873	39	0.5	649	-267	-0.1	613
Kz 35_70		1118	0.6	527	1485	1.6	512	1024	0.6	480
Кт Ям		973	0.2	563	1298	-1.1	612	1802	-0.6	548
Кт Ом		1293	0.9	745	1654	1.5	535	1431	0.6	487
Кт Бм	1000 гПа	-1031	-1.2	652	1019	1.2	702	1219	1.4	297
Km 35_50		357	0.1	234	825	-0.1	265	1349	0.5	178
Km 50_70		-406	-1.2	209	231	0.4	182	525	1.0	123
Km 35_70		-46	-0.8	159	509	0.2	185	896	0.9	120
Кт Ям		1827	0.5	518	1930	-1.1	775	2442	-0.7	729
Кт Ом		2282	0.7	695	2894	1.4	608	2357	0.3	576
Кт Бм		1875	-0.3	908	2346	0.7	844	2159	0.7	518
Km 35_50		2291	0.8	299	2812	1.2	359	2761	0.1	254
Km 50_70		2213	0.8	334	2082	1.2	234	1952	0.9	233
Km 35_70		2234	1.0	278	2396	1.7	214	2297	0.8	176

^{*} Описание индексов приведено в разделе «Терминология».

^{**} Климатические характеристики (STD, ASTD) рассчитаны относительно норм 1981–2010 гг.

Умеренные широты между 35° и 50° с. ш. над II е. с. р.

В зоне умеренных широт между 35° и 50° с. ш. над II е. с. р. перенос воздуха с запада на восток оставался преобладающим во всем слое тропосферы (зональные индексы положительные). Его интенсивность в среднем слое тропосферы была близка к норме, в нижнем слое — превышала норму (Kz равен -0,3STD и 1,1STD в средней тропосфере и у поверхности земли соответственно).

Интенсивность меридиональных движений воздуха в средней тропосфере над указанной широтной зоной оставалась слабой, но многолетний баланс между меридиональными составляющими близок к норме (|Km| равен -1,3STD, Km-0,0STD). В нижнем слое тропосферы интенсивность межширотного обмена близка к климатической, многолетний баланс между меридиональными составляющими незначительно нарушен в пользу южной компоненты обмена (|Km| равен 0,1STD, Km-0,5STD). В среднем за месяц во всем слое тропосферы наблюдалось преобладание движений воздуха с юга, в средней тропосфере это преобладание было незначительным (значения меридиональных индексов положительные).

Широтная зона 50-70° с. ш. над II е. с. р.

В средней тропосфере над широтной зоной 50– 70° с. ш. II е. с. р. преобладал западновосточный перенос воздуха (значение зонального индекса положительное), его интенсивность близка к норме (Кz составлял 0,3STD). У поверхности земли количество движений воздуха с востока незначительно преобладала над движениями с запада, что близко к норме (Кz составлял -0,1STD).

Интенсивность межширотного обмена в средней тропосфере над указанной широтной зоной была слабой, что определялось деградацией северной составляющей обмена (|Km| равен -1,8STD, Km-1,2STD). У поверхности земли межширотный обмен был активным, что определялось усилением южной составляющей обмена (|Km| равен 0,9STD, Km-1,0STD). В среднем за месяц в средней тропосфере количество движений воздуха как с севера, так и с юга было примерно равным, в нижнем слое преобладал перенос с юга (значение индекса положительное).

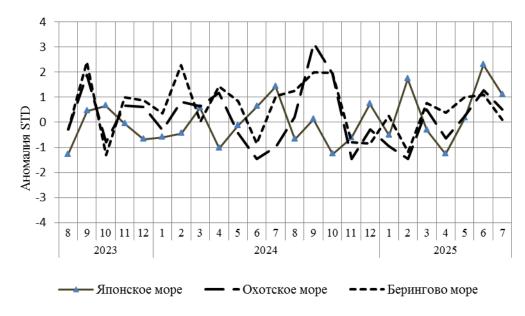


Рис. 1-6 Годовой ход стандартизованных аномалий индекса интегрального зонального переноса воздуха с учетом знака (Кz) в нижней тропосфере над дальневосточными морями

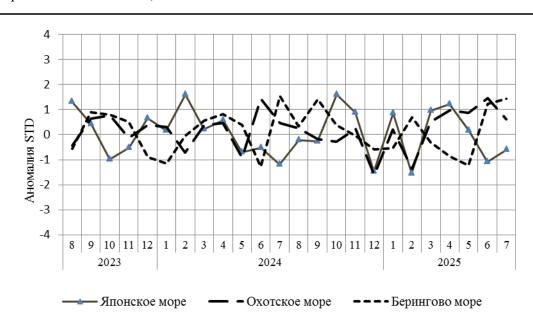


Рис. 1-7 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха с учетом знака (Кт) в нижней тропосфере над дальневосточными морями

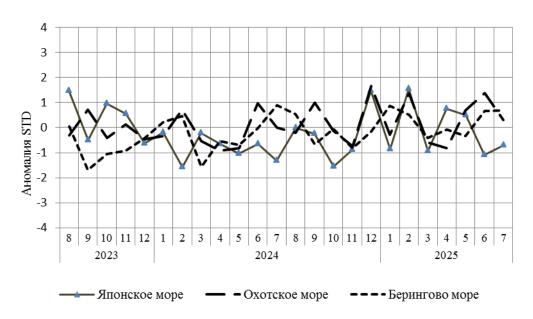


Рис. 1-8 Годовой ход стандартизованных аномалий индекса интегрального меридионального переноса воздуха без учета знака (|Km|) в нижней тропосфере над дальневосточными морями

1.3.2 Индекс засушливости Педя S для станций Приморского и Хабаровского краёв 1

Приморский край	Март	Апрель	Май	Июнь	Июль
Анучино	1.1	-0.3	0.7	2.2	3.0
Астраханка	1.1	0.7	0.9	1.6	1.2
Богополь	0.1	-1.4	1.8	3.3	3.3
Владивосток	1.2	-0.3	1.1	2.5	4.3
Дальнереченск	-0.6	2.3	0.6	1.3	3.5
Пограничный	0.7	-0.8	1.3	2.0	2.8
Посьет	1.9	0.7	1.5	3.6	4.4
Преображение	1.4	-2.0	0.0	2.2	4.5
Рощино	0.1	2.5	0.2		
Рудная Пристань	0.1	-0.2	2.0	3.5	4.7
Сосуново	-1.1	0.2	1.7	3.0	5.5
Терней	0.4	0.2	1.9	3.6	6.0
Тимирязевский	0.4	0.1	1.4	2.9	3.0
Турий Рог		0.3	0.2	1.7	
Хабаровский край	Март	Апрель	Май	Июнь	Июль
Аян	-0.4	0.5	-5.1	1.7	-0.3
Гвасюги	-0.6	1.9	0.7	1.4	3.4
Екатерино-Никольское	-0.4	1.0	0.0	0.1	3.7
Им. Полины Осипенко	-1.4	0.7	-3.3	-1.6	-0.8
Комсомольск-на-Амуре	-1.4	1.2	-0.4	0.0	0.4
Нелькан	-0.8	3.0	0.1	0.0	0.8
Николаевск-на-Амуре	-0.1	2.6	1.7	-0.2	-1.1
Охотск	-1.1	0.7	-0.9	0.2	-2.3
Сковородино	-0.5	2.4	-0.2	1.0	-2.5
Софийский Прииск	-4.7	1.4	0.3	1.2	0.1
Сутур	-1.4	-0.3	0.0	0.7	1.8
Тумнин	-1.0	1.0	0.3	2.2	2.5
Урми	-0.9	0.7	1.0	1.4	1.4
Усть-Нюкжа	0.2	2.2	1.7	0.9	-0.9
Хабаровск_	-1.9	1.3	-0.4	1.3	1.6
Хуларин	-1.8	1.1	0.3	1.7	0.7
Чекунда	-2.1	-0.8	0.3	0.4	1.7
Чумикан	-1.7	-0.3	-1.7	1.7	0.6

Положительные значения индекса соответствуют засушливым условиям, отрицательные – условиям достаточного (избыточного) увлажнения при пониженном фоне температур. Для месячных значений S принято считать, что

- если 1<S<2, то засуха слабая, если -1>S>-2, то увлажнение слабое;
- если 2<S<3, то засуха умеренная, если -2>S>-3, то увлажнение умеренное;
- если S>3, то засуха сильная, если S<-3, то увлажнение сильное.

-

¹ См. раздел «Терминология бюллетеня».